These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36258336)

  • 1. Scanning single-pixel imaging lidar.
    Huang J; Li Z; Shi D; Chen Y; Yuan K; Hu S; Wang Y
    Opt Express; 2022 Oct; 30(21):37484-37492. PubMed ID: 36258336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution single-photon imaging at 8.2 kilometers.
    Li ZP; Huang X; Jiang PY; Hong Y; Yu C; Cao Y; Zhang J; Xu F; Jian-Wei Pan A
    Opt Express; 2020 Feb; 28(3):4076-4087. PubMed ID: 32122067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Sensitivity Study on Surface Pixel Shifts in High Spatial Resolution Satellite Images Resulting from Atmospheric Refraction in the Sensor to Surface Ray Path.
    Gao BC; Ward E; Bowles J; Yingling A
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33271835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional ghost imaging lidar via sparsity constraint.
    Gong W; Zhao C; Yu H; Chen M; Xu W; Han S
    Sci Rep; 2016 May; 6():26133. PubMed ID: 27184530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long range 3D imaging through atmospheric obscurants using array-based single-photon LiDAR.
    Jiang PY; Li ZP; Ye WL; Hong Y; Dai C; Huang X; Xi SQ; Lu J; Cui DJ; Cao Y; Xu F; Pan JW
    Opt Express; 2023 May; 31(10):16054-16066. PubMed ID: 37157692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-line-of-sight tracking of people at long range.
    Chan S; Warburton RE; Gariepy G; Leach J; Faccio D
    Opt Express; 2017 May; 25(9):10109-10117. PubMed ID: 28468386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-pixel three-dimensional imaging with time-based depth resolution.
    Sun MJ; Edgar MP; Gibson GM; Sun B; Radwell N; Lamb R; Padgett MJ
    Nat Commun; 2016 Jul; 7():12010. PubMed ID: 27377197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico.
    Urbazaev M; Thiel C; Cremer F; Dubayah R; Migliavacca M; Reichstein M; Schmullius C
    Carbon Balance Manag; 2018 Feb; 13(1):5. PubMed ID: 29468474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range photon-efficient 3D imaging without range ambiguity.
    Dai C; Ye WL; Yu C; Huang X; Li ZP; Xu F
    Opt Lett; 2023 Mar; 48(6):1542-1545. PubMed ID: 36946973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact long-range single-photon imager with dynamic imaging capability.
    Jiang PY; Li ZP; Xu F
    Opt Lett; 2021 Mar; 46(5):1181-1184. PubMed ID: 33649687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of image motion for optical remote sensing satellites staring imaging with area-array detectors.
    Peng J; He Y; Zheng L; Wang S; Cheng W
    Appl Opt; 2023 Apr; 62(10):2470-2478. PubMed ID: 37132794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time.
    Kim G; Park Y
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30181490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and imaging of distant targets by near-infrared polarization single-pixel lidar.
    Chen Y; Yin K; Shi D; Yang W; Huang J; Guo Z; Yuan K; Wang Y
    Appl Opt; 2022 Aug; 61(23):6905-6914. PubMed ID: 36255772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active 3D Imaging of Vegetation based on Multi-Wavelength Fluorescence LiDAR.
    Zhao X; Shi S; Yang J; Gong W; Sun J; Chen B; Guo K; Chen B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror.
    Zhou J; Qian K
    Appl Opt; 2019 Feb; 58(5):A283-A290. PubMed ID: 30874006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spaceborne Lidar in the Study of Marine Systems.
    Hostetler CA; Behrenfeld MJ; Hu Y; Hair JW; Schulien JA
    Ann Rev Mar Sci; 2018 Jan; 10():121-147. PubMed ID: 28961071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy.
    Zhang J; Sun J; Chen Q; Li J; Zuo C
    Sci Rep; 2017 Sep; 7(1):11777. PubMed ID: 28924248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-angle MEMS-based imaging lidar by decoupled scan axes.
    Hellman B; Gin A; Smith B; Kim YS; Chen G; Winkler P; Mccann P; Takashima Y
    Appl Opt; 2020 Jan; 59(1):28-37. PubMed ID: 32225273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.