These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36258386)

  • 1. Phase estimation of an SU(1,1) interferometer with a coherent superposition squeezed vacuum in a realistic case.
    Xu Y; Chang S; Liu C; Hu L; Liu S
    Opt Express; 2022 Oct; 30(21):38178-38193. PubMed ID: 36258386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase estimation of a Mach-Zehnder interferometer via the Laguerre excitation squeezed state.
    Zhao Z; Zhang H; Huang Y; Hu L
    Opt Express; 2023 May; 31(11):17645-17662. PubMed ID: 37381493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the phase sensitivity of an SU(1,1) interferometer with photon-added squeezed vacuum light.
    Guo LL; Yu YF; Zhang ZM
    Opt Express; 2018 Oct; 26(22):29099-29109. PubMed ID: 30470076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer.
    Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D
    Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a superposition of odd photon number states for quantum information networks.
    Neergaard-Nielsen JS; Nielsen BM; Hettich C; Mølmer K; Polzik ES
    Phys Rev Lett; 2006 Aug; 97(8):083604. PubMed ID: 17026305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-improved phase estimation with a displacement-assisted SU(1,1) interferometer.
    Ye W; Chen C; Chang S; Gao S; Zhang H; Xia Y; Hu W; Rao X
    Opt Express; 2023 Dec; 31(25):41850-41863. PubMed ID: 38087573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Interferometry for Quantum-Enhanced Measurements of Multiphoton Absorption.
    Panahiyan S; Muñoz CS; Chekhova MV; Schlawin F
    Phys Rev Lett; 2023 May; 130(20):203604. PubMed ID: 37267533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical continuous-variable qubit.
    Neergaard-Nielsen JS; Takeuchi M; Wakui K; Takahashi H; Hayasaka K; Takeoka M; Sasaki M
    Phys Rev Lett; 2010 Jul; 105(5):053602. PubMed ID: 20867917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase sensitivity of an SU(1,1) interferometer in photon-loss via photon operations.
    Xu Y; Zhao T; Kang Q; Liu C; Hu L; Liu S
    Opt Express; 2023 Feb; 31(5):8414-8427. PubMed ID: 36859956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian private quantum channel with squeezed coherent states.
    Jeong K; Kim J; Lee SY
    Sci Rep; 2015 Sep; 5():13974. PubMed ID: 26364893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states.
    Ma X; You C; Adhikari S; Matekole ES; Glasser RT; Lee H; Dowling JP
    Opt Express; 2018 Jul; 26(14):18492-18504. PubMed ID: 30114028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-shot-noise-limited phase estimation via single-mode inputs.
    Zhang JD; You C; Wang S
    Opt Express; 2022 Nov; 30(24):43143-43156. PubMed ID: 36523019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximal quantum Fisher information for phase estimation without initial parity.
    Yu X; Zhao X; Shen L; Shao Y; Liu J; Wang X
    Opt Express; 2018 Jun; 26(13):16292-16302. PubMed ID: 30119462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowing Quantum Decoherence by Squeezing in Phase Space.
    Le Jeannic H; Cavaillès A; Huang K; Filip R; Laurat J
    Phys Rev Lett; 2018 Feb; 120(7):073603. PubMed ID: 29542961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction.
    Takahashi H; Wakui K; Suzuki S; Takeoka M; Hayasaka K; Furusawa A; Sasaki M
    Phys Rev Lett; 2008 Dec; 101(23):233605. PubMed ID: 19113554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources.
    Huang K; Le Jeannic H; Ruaudel J; Verma VB; Shaw MD; Marsili F; Nam SW; Wu E; Zeng H; Jeong YC; Filip R; Morin O; Laurat J
    Phys Rev Lett; 2015 Jul; 115(2):023602. PubMed ID: 26207468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent control of vacuum squeezing in the gravitational-wave detection band.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2006 Jul; 97(1):011101. PubMed ID: 16907363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teleportation-based noiseless quantum amplification of coherent states of light.
    Fiurášek J
    Opt Express; 2022 Jan; 30(2):1466-1489. PubMed ID: 35209306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.