BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36258402)

  • 1. Non-hogel-based computer generated hologram with occlusion processing between the foreground light field and background hologram.
    Min D; Min K; Choi HJ; Lee H; Park JH
    Opt Express; 2022 Oct; 30(21):38339-38356. PubMed ID: 36258402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient calculation scheme for high pixel resolution non-hogel-based computer generated hologram from light field.
    Park JH
    Opt Express; 2020 Mar; 28(5):6663-6683. PubMed ID: 32225909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-hogel-based computer generated hologram from light field using complex field recovery technique from Wigner distribution function.
    Park JH; Askari M
    Opt Express; 2019 Feb; 27(3):2562-2574. PubMed ID: 30732292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hologram conversion for speckle free reconstruction using light field extraction and deep learning.
    Park DY; Park JH
    Opt Express; 2020 Feb; 28(4):5393-5409. PubMed ID: 32121761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid approach for fast occlusion processing in computer-generated hologram calculation.
    Gilles A; Gioia P; Cozot R; Morin L
    Appl Opt; 2016 Jul; 55(20):5459-70. PubMed ID: 27409327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram.
    Askari M; Kim SB; Shin KS; Ko SB; Kim SH; Park DY; Ju YG; Park JH
    Opt Express; 2017 Oct; 25(21):25867-25878. PubMed ID: 29041249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusion culling for computer generated hologram based on ray-wavefront conversion.
    Wakunami K; Yamashita H; Yamaguchi M
    Opt Express; 2013 Sep; 21(19):21811-22. PubMed ID: 24104073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution Fourier hologram synthesis from photographic images through computing the light field.
    Chen N; Ren Z; Lam EY
    Appl Opt; 2016 Mar; 55(7):1751-6. PubMed ID: 26974639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene.
    Abookasis D; Rosen J
    Appl Opt; 2006 Sep; 45(25):6533-8. PubMed ID: 16912793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-generated hologram with occlusion effect using layer-based processing.
    Zhang H; Cao L; Jin G
    Appl Opt; 2017 May; 56(13):F138-F143. PubMed ID: 28463308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered holographic stereogram based on inverse Fresnel diffraction.
    Zhang H; Zhao Y; Cao L; Jin G
    Appl Opt; 2016 Jan; 55(3):A154-9. PubMed ID: 26835948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foveated computer-generated hologram and its progressive update using triangular mesh scene model for near-eye displays.
    Ju YG; Park JH
    Opt Express; 2019 Aug; 27(17):23725-23738. PubMed ID: 31510273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of foreground and background from light field using gradient information.
    Lee JY; Park RH
    Appl Opt; 2017 Feb; 56(4):1069-1078. PubMed ID: 28158114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display.
    Chen RH; Wilkinson TD
    Appl Opt; 2009 Jul; 48(21):4246-55. PubMed ID: 19623239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections.
    Shaked NT; Rosen J
    Appl Opt; 2008 Jul; 47(19):D21-7. PubMed ID: 18594575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of computer-generated spherical hologram of real object with 360° field of view using a depth camera.
    Li G; Phan AH; Kim N; Park JH
    Appl Opt; 2013 May; 52(15):3567-75. PubMed ID: 23736242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hologram generation using light-field modulated zone plates.
    Koyama T; Takaki Y
    Opt Express; 2024 Jun; 32(12):21837-21854. PubMed ID: 38859528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cylindrical angular spectrum using Fourier coefficients of point light source and its application to fast hologram calculation.
    Oh S; Jeong IK
    Opt Express; 2015 Nov; 23(23):29555-64. PubMed ID: 26698438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of potential distortions corresponding to the hologram printed by a holographic wave-front printer.
    Choi H; Kang H; Kim N
    Opt Express; 2021 Aug; 29(16):24972-24988. PubMed ID: 34614839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.