BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36258476)

  • 1. Phase-only hologram generated by a convolutional neural network trained using low-frequency mixed noise.
    Wang X; Liu X; Jing T; Li P; Jiang X; Liu Q; Yan X
    Opt Express; 2022 Sep; 30(20):35189-35201. PubMed ID: 36258476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction model-driven neural network trained using hybrid domain loss for real-time and high-quality computer-generated holography.
    Zheng H; Peng J; Wang Z; Shui X; Yu Y; Xia X
    Opt Express; 2023 Jun; 31(12):19931-19944. PubMed ID: 37381398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep neural network for multi-depth hologram generation and its training strategy.
    Lee J; Jeong J; Cho J; Yoo D; Lee B; Lee B
    Opt Express; 2020 Aug; 28(18):27137-27154. PubMed ID: 32906972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The U-Net-based phase-only CGH using the two-dimensional phase grating.
    Liu X; Yan X; Wang X
    Opt Express; 2022 Nov; 30(23):41624-41643. PubMed ID: 36366635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier-inspired neural module for real-time and high-fidelity computer-generated holography.
    Dong Z; Xu C; Ling Y; Li Y; Su Y
    Opt Lett; 2023 Feb; 48(3):759-762. PubMed ID: 36723582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase dual-resolution networks for a computer-generated hologram.
    Yu T; Zhang S; Chen W; Liu J; Zhang X; Tian Z
    Opt Express; 2022 Jan; 30(2):2378-2389. PubMed ID: 35209379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time High-Quality Computer-Generated Hologram Using Complex-Valued Convolutional Neural Network.
    Zhong C; Sang X; Yan B; Li H; Chen D; Qin X; Chen S; Ye X
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3709-3718. PubMed ID: 37022034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time 4K computer-generated hologram based on encoding conventional neural network with learned layered phase.
    Zhong C; Sang X; Yan B; Li H; Xie X; Qin X; Chen S
    Sci Rep; 2023 Nov; 13(1):19372. PubMed ID: 37938607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital Hologram Watermarking Based on Multiple Deep Neural Networks Training Reconstruction and Attack.
    Kang JW; Lee JE; Choi JH; Kim W; Kim JK; Kim DW; Seo YH
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Batch denoising of ESPI fringe patterns based on convolutional neural network.
    Hao F; Tang C; Xu M; Lei Z
    Appl Opt; 2019 May; 58(13):3338-3346. PubMed ID: 31044829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Image Resolution of Whole-Heart Coronary MRA Using Convolutional Neural Network.
    Kobayashi H; Nakayama R; Hizukuri A; Ishida M; Kitagawa K; Sakuma H
    J Digit Imaging; 2020 Apr; 33(2):497-503. PubMed ID: 31452007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolution neural networks based artifact suppression in under-sampled radial acquisitions of myocardial T
    Nezafat M; El-Rewaidy H; Kucukseymen S; Hauser TH; Fahmy AS
    Phys Med Biol; 2020 Nov; 65(22):225024. PubMed ID: 33045693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer.
    Lu JY; Lee PY; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1326-1336. PubMed ID: 35175918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.