These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36258501)

  • 41. Plasmonic band gap engineering of plasmon-exciton coupling.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silicon Quantum Dots in Dielectric Scattering Media: Broadband Enhancement of Effective Absorption Cross Section by Light Trapping.
    Sugimoto H; Ozaki Y; Fujii M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19135-19142. PubMed ID: 28513134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
    Wu M; Han Z; Van V
    Opt Express; 2010 May; 18(11):11728-36. PubMed ID: 20589033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface mode with large field enhancement in dielectric-dimer-on-mirror structures.
    Ao X
    Opt Lett; 2018 Mar; 43(5):1091-1094. PubMed ID: 29489788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compact hybrid plasmonic slot waveguide sensor with a giant enhancement factor for surface-enhanced Raman scattering application.
    Wang S; Zhu Y; Luo S; Zhu E; Chen S
    Opt Express; 2021 Aug; 29(16):24765-24778. PubMed ID: 34614825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electromechanically reconfigurable plasmonic photodetector with a distinct shift in resonant wavelength.
    Oshita M; Saito S; Kan T
    Microsyst Nanoeng; 2023; 9():26. PubMed ID: 36910257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings.
    Lee YC; Huang CF; Chang JY; Wu ML
    Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for
    Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M
    Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wide-band 'black silicon' with atomic layer deposited NbN.
    Isakov K; Perros AP; Shah A; Lipsanen H
    Nanotechnology; 2018 Aug; 29(33):335303. PubMed ID: 29790853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure.
    Shen H; Yang L; Jin Y; He S
    Opt Express; 2020 Oct; 28(21):31414-31424. PubMed ID: 33115114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inscribing diffraction grating inside silicon substrate using a subnanosecond laser in one photon absorption wavelength.
    Sugimoto K; Matsuo S; Naoi Y
    Sci Rep; 2020 Dec; 10(1):21451. PubMed ID: 33293586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly absorbing solar cells--a survey of plasmonic nanostructures.
    Dunbar RB; Pfadler T; Schmidt-Mende L
    Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays.
    Liberman V; Parameswaran L; Rothschild M; Ait-El-Aoud Y; Luce A; Okamoto M; Willcox WB; Giardini S; Osgood RM
    Nanotechnology; 2018 Sep; 29(38):385206. PubMed ID: 29956677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of a plasmonic modulator incorporating an overlaid grating coupler.
    Hassan S; Lisicka-Skrzek E; Olivieri A; Tait RN; Berini P
    Nanotechnology; 2014 Dec; 25(49):495202. PubMed ID: 25414162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing.
    Wang Y; Zhu D; Cui Z; Hou L; Lin L; Qu F; Liu X; Nie P
    ACS Omega; 2019 Nov; 4(20):18645-18652. PubMed ID: 31737824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.