BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36259138)

  • 1. Wetland phosphorus dynamics and phosphorus removal potential.
    Skinner M
    Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability.
    Valach AC; Kasak K; Hemes KS; Anthony TL; Dronova I; Taddeo S; Silver WL; Szutu D; Verfaillie J; Baldocchi DD
    PLoS One; 2021; 16(3):e0248398. PubMed ID: 33765085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation.
    Walton CR; Zak D; Audet J; Petersen RJ; Lange J; Oehmke C; Wichtmann W; Kreyling J; Grygoruk M; Jabłońska E; Kotowski W; Wiśniewska MM; Ziegler R; Hoffmann CC
    Sci Total Environ; 2020 Jul; 727():138709. PubMed ID: 32334232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewetting increases vegetation cover and net growing season carbon uptake under fen conditions after peat-extraction in Manitoba, Canada.
    Turmel-Courchesne L; Davies MA; Guêné-Nanchen M; Strack M; Rochefort L
    Sci Rep; 2023 Nov; 13(1):20588. PubMed ID: 37996571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil properties and sediment accretion modulate methane fluxes from restored wetlands.
    Chamberlain SD; Anthony TL; Silver WL; Eichelmann E; Hemes KS; Oikawa PY; Sturtevant C; Szutu DJ; Verfaillie JG; Baldocchi DD
    Glob Chang Biol; 2018 Sep; 24(9):4107-4121. PubMed ID: 29575340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate and mineral accretion as drivers of mineral-associated and particulate organic matter accumulation in tidal wetland soils.
    Fu C; Li Y; Zeng L; Tu C; Wang X; Ma H; Xiao L; Christie P; Luo Y
    Glob Chang Biol; 2024 Jan; 30(1):e17070. PubMed ID: 38273549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands.
    Bhomia RK; Reddy KR
    J Environ Qual; 2018 Mar; 47(2):361-370. PubMed ID: 29634798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a mechanistic understanding of "peat collapse" and its potential contribution to coastal wetland loss.
    Chambers LG; Steinmuller HE; Breithaupt JL
    Ecology; 2019 Jul; 100(7):e02720. PubMed ID: 30933312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.
    Bhomia RK; Inglett PW; Reddy KR
    Sci Total Environ; 2015 Nov; 533():297-306. PubMed ID: 26172597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal impoundment management reduces nitrogen cycling but not resilience to surface fire in a tidal wetland.
    Jones SF; Schutte CA; Roberts BJ; Thorne KM
    J Environ Manage; 2022 Feb; 303():114153. PubMed ID: 34875564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of restoration years on soil nitrogen and phosphorus in inland salt marshes.
    Zhao D; Wan D; Yang J; Liu J; Yong Z; Ma C
    PeerJ; 2024; 12():e16766. PubMed ID: 38250730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.
    Cusell C; Kooijman A; Fernandez F; van Wirdum G; Geurts JJ; van Loon EE; Kalbitz K; Lamers LP
    Sci Total Environ; 2014 May; 481():129-41. PubMed ID: 24594742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany.
    Zerbe S; Steffenhagen P; Parakenings K; Timmermann T; Frick A; Gelbrecht J; Zak D
    Environ Manage; 2013 Jun; 51(6):1194-209. PubMed ID: 23636204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions.
    He S; Malfatti SA; McFarland JW; Anderson FE; Pati A; Huntemann M; Tremblay J; Glavina del Rio T; Waldrop MP; Windham-Myers L; Tringe SG
    mBio; 2015 May; 6(3):e00066-15. PubMed ID: 25991679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing passive rehabilitation for carbon gains in rain-filled agricultural wetlands.
    Treby S; Carnell PE; Trevathan-Tackett SM; Bonetti G; Macreadie PI
    J Environ Manage; 2020 Feb; 256():109971. PubMed ID: 31989987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fifty-five years of soil development in restored freshwater depressional wetlands.
    Ballantine K; Schneider R
    Ecol Appl; 2009 Sep; 19(6):1467-80. PubMed ID: 19769095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indictors of wetland health improve following small-scale ecological restoration on private land.
    Bentley SB; Tomscha SA; Deslippe JR
    Sci Total Environ; 2022 Sep; 837():155760. PubMed ID: 35533865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in benthic nutrient sources within a wetland after hydrologic reconnection.
    Kuwabara JS; Topping BR; Carter JL; Wood TM; Cameron JM; Asbill-Case JR; Carlson RA
    Environ Toxicol Chem; 2012 Sep; 31(9):1995-2013. PubMed ID: 22707141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of wetland types on dynamics and couplings of labile phosphorus, iron and sulfur in coastal wetlands during growing season.
    Hu M; Sardans J; Le Y; Yan R; Zhong Y; Peñuelas J
    Sci Total Environ; 2022 Jul; 830():154460. PubMed ID: 35278550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.