These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36259259)

  • 21. Driver-passenger collaboration as a basis for human-machine interface design for vehicle navigation systems.
    Antrobus V; Burnett G; Krehl C
    Ergonomics; 2017 Mar; 60(3):321-332. PubMed ID: 27049529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the impact of driving automation systems on distracted driving behaviors.
    Dunn NJ; Dingus TA; Soccolich S; Horrey WJ
    Accid Anal Prev; 2021 Jun; 156():106152. PubMed ID: 33932819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring drivers' mental workload and visual demand while using an in-vehicle HMI for eco-safe driving.
    Li X; Vaezipour A; Rakotonirainy A; Demmel S; Oviedo-Trespalacios O
    Accid Anal Prev; 2020 Oct; 146():105756. PubMed ID: 32919220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of in-vehicle tasks and time-gap selection while reclaiming control from adaptive cruise control (ACC) with bus simulator.
    Lin TW; Hwang SL; Su JM; Chen WH
    Accid Anal Prev; 2008 May; 40(3):1164-70. PubMed ID: 18460385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of driver active interventions during automated driving by displaying trajectory pointers-A driving simulator study.
    Ono S; Sasaki H; Kumon H; Fuwamoto Y; Kondo S; Narumi T; Tanikawa T; Hirose M
    Traffic Inj Prev; 2019; 20(sup1):S152-S156. PubMed ID: 31381449
    [No Abstract]   [Full Text] [Related]  

  • 26. Evaluating secondary input devices to support an automotive touchscreen HMI: A cross-cultural simulator study conducted in the UK and China.
    Large DR; Burnett G; Crundall E; Lawson G; Skrypchuk L; Mouzakitis A
    Appl Ergon; 2019 Jul; 78():184-196. PubMed ID: 31046950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle.
    Ulahannan A; Cain R; Thompson S; Skrypchuk L; Mouzakitis A; Jennings P; Birrell S
    Appl Ergon; 2020 Jan; 82():102969. PubMed ID: 31600714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of cruise control and adaptive cruise control on driving behaviour--a driving simulator study.
    Markvollrath ; Schleicher S; Gelau C
    Accid Anal Prev; 2011 May; 43(3):1134-9. PubMed ID: 21376911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A user study of directional tactile and auditory user interfaces for take-over requests in conditionally automated vehicles.
    Gruden T; Tomažič S; Sodnik J; Jakus G
    Accid Anal Prev; 2022 Sep; 174():106766. PubMed ID: 35785713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix.
    Wang Y; Bao S; Du W; Ye Z; Sayer JR
    J Safety Res; 2017 Dec; 63():149-155. PubMed ID: 29203013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Sound to Reduce Visual Distraction from In-vehicle Human-Machine Interfaces.
    Larsson P; Niemand M
    Traffic Inj Prev; 2015; 16 Suppl 1():S25-30. PubMed ID: 26027972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
    Eom H; Lee SH
    Sensors (Basel); 2015 Jun; 15(6):13916-44. PubMed ID: 26076406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of automation trust in drivers' visual distraction during automation.
    Zhang Y; Ma J; Pan C; Chang R
    PLoS One; 2021; 16(9):e0257201. PubMed ID: 34520500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of an in-vehicle eco-safe driving system on drivers' glance behaviour.
    Li X; Vaezipour A; Rakotonirainy A; Demmel S
    Accid Anal Prev; 2019 Jan; 122():143-152. PubMed ID: 30384084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redesigning Today's Driving Automation Toward Adaptive Backup Control With Context-Based and Invisible Interfaces.
    Cabrall CDD; Stapel JCJ; Happee R; de Winter JCF
    Hum Factors; 2020 Mar; 62(2):211-228. PubMed ID: 31995390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Gesture-Based In-Vehicle Interaction: User Experience and the Potential to Reduce Driver Distraction.
    Graichen L; Graichen M; Krems JF
    Hum Factors; 2019 Aug; 61(5):774-792. PubMed ID: 30694705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adopting an HMI for overtaking assistance - Impact of distance display, advice, and guidance information on driver gaze and performance.
    Fu R; Liu W; Zhang H; Liu X; Yuan W
    Accid Anal Prev; 2023 Oct; 191():107204. PubMed ID: 37454562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating driver eye glance behavior and secondary task engagement while using driving automation systems.
    Noble AM; Miles M; Perez MA; Guo F; Klauer SG
    Accid Anal Prev; 2021 Mar; 151():105959. PubMed ID: 33385962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drivers anticipate lead-vehicle conflicts during automated longitudinal control: Sensory cues capture driver attention and promote appropriate and timely responses.
    Morando A; Victor T; Dozza M
    Accid Anal Prev; 2016 Dec; 97():206-219. PubMed ID: 27658227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.