These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36259362)

  • 1. Enzymatic Late-Stage Halogenation of Peptides.
    Schnepel C; Moritzer AC; Gäfe S; Montua N; Minges H; Nieß A; Niemann HH; Sewald N
    Chembiochem; 2023 Jan; 24(1):e202200569. PubMed ID: 36259362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Peptide and Protein Bromination: The BromoTrp Tag.
    Montua N; Thye P; Hartwig P; Kühle M; Sewald N
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202314961. PubMed ID: 38009455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into the self-sufficient flavin-dependent halogenase.
    Dai L; Li H; Dai S; Zhang Q; Zheng H; Hu Y; Guo RT; Chen CC
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129312. PubMed ID: 38216020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late-Stage Diversification of Tryptophan-Derived Biomolecules.
    Gruß H; Sewald N
    Chemistry; 2020 Apr; 26(24):5328-5340. PubMed ID: 31544296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halogenation of Peptides and Proteins Using Engineered Tryptophan Halogenase Enzymes.
    Sana B; Ke D; Li EHY; Ho T; Seayad J; Duong HA; Ghadessy FJ
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation.
    Crowe C; Molyneux S; Sharma SV; Zhang Y; Gkotsi DS; Connaris H; Goss RJM
    Chem Soc Rev; 2021 Sep; 50(17):9443-9481. PubMed ID: 34368824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants.
    Lee J; Kim J; Kim H; Kim EJ; Jeong HJ; Choi KY; Kim BG
    Chembiochem; 2020 May; 21(10):1446-1452. PubMed ID: 31916339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfect Partners: Biocatalytic Halogenation and Metal Catalysis for Protein Bioconjugation.
    Montua N; Sewald N
    Chembiochem; 2024 Dec; 25(23):e202400496. PubMed ID: 39225774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the Stability of Flavin-Dependent Halogenases by Disulfide Engineering.
    Besse C; Niemann HH; Sewald N
    Chembiochem; 2024 Jan; 25(1):e202300700. PubMed ID: 37917145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.
    Lewis JC
    Acc Chem Res; 2024 Aug; 57(15):2067-2079. PubMed ID: 39038085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended Biocatalytic Halogenation Cascades Involving a Single-Polypeptide Regeneration System for Diffusible FADH
    Montua N; Sewald N
    Chembiochem; 2023 Nov; 24(22):e202300478. PubMed ID: 37549375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu-Catalyzed Site-Selective C(sp
    Guerrero I; Correa A
    Org Lett; 2020 Mar; 22(5):1754-1759. PubMed ID: 32052977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation.
    Schnepel C; Sewald N
    Chemistry; 2017 Sep; 23(50):12064-12086. PubMed ID: 28464370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures, mechanisms and applications of flavin-dependent halogenases.
    Phintha A; Prakinee K; Chaiyen P
    Enzymes; 2020; 47():327-364. PubMed ID: 32951827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.