These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36259547)

  • 1. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema.
    Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q
    J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.
    Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H
    Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-parameter MRI radiomic features may contribute to predict progression-free survival in patients with WHO grade II meningiomas.
    Zeng Q; Tian Z; Dong F; Shi F; Xu P; Zhang J; Ling C; Guo Z
    Front Oncol; 2024; 14():1246730. PubMed ID: 39007097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation.
    Joo L; Park JE; Park SY; Nam SJ; Kim YH; Kim JH; Kim HS
    Neuro Oncol; 2021 Feb; 23(2):324-333. PubMed ID: 32789495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI-based machine learning models predict the malignant biological behavior of meningioma.
    Li M; Liu L; Qi J; Qiao Y; Zeng H; Jiang W; Zhu R; Chen F; Huang H; Wu S
    BMC Med Imaging; 2023 Sep; 23(1):141. PubMed ID: 37759192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area.
    Mori N; Mugikura S; Endo T; Endo H; Oguma Y; Li L; Ito A; Watanabe M; Kanamori M; Tominaga T; Takase K
    Neuroradiology; 2023 Feb; 65(2):257-274. PubMed ID: 36044063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric Magnetic Resonance Imaging in the Assessment of Primary Brain Tumors Through Radiomic Features: A Metric for Guided Radiation Treatment Planning.
    Florez E; Nichols T; E Parker E; T Lirette S; Howard CM; Fatemi A
    Cureus; 2018 Oct; 10(10):e3426. PubMed ID: 30542636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading.
    Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J
    World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiomic Features on Multiparametric MRI for Preoperative Evaluation of Pituitary Macroadenomas Consistency: Preliminary Findings.
    Wan T; Wu C; Meng M; Liu T; Li C; Ma J; Qin Z
    J Magn Reson Imaging; 2022 May; 55(5):1491-1503. PubMed ID: 34549842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI.
    Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D
    Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomic features of magnetic resonance images as novel preoperative predictive factors of bone invasion in meningiomas.
    Zhang J; Sun J; Han T; Zhao Z; Cao Y; Zhang G; Zhou J
    Eur J Radiol; 2020 Nov; 132():109287. PubMed ID: 32980725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features.
    Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K
    BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics.
    Kalasauskas D; Kosterhon M; Kurz E; Schmidt L; Altmann S; Grauhan NF; Sommer C; Othman A; Brockmann MA; Ringel F; Keric N
    Sci Rep; 2024 Sep; 14(1):20586. PubMed ID: 39232068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editorial for "Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema".
    Hwang SN
    J Magn Reson Imaging; 2023 Jul; 58(1):311-312. PubMed ID: 36300642
    [No Abstract]   [Full Text] [Related]  

  • 16. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study.
    Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J
    EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning radiomics model for preoperative grading in meningioma.
    Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J
    Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study.
    Banzato T; Causin F; Della Puppa A; Cester G; Mazzai L; Zotti A
    J Magn Reson Imaging; 2019 Oct; 50(4):1152-1159. PubMed ID: 30896065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.
    Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A
    Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.