These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36259646)

  • 1. A cap 0-dependent mRNA capture method to analyze the yeast transcriptome.
    Nowacka M; Latoch P; Izert MA; Karolak NK; Tomecki R; Koper M; Tudek A; Starosta AL; Górna MW
    Nucleic Acids Res; 2022 Dec; 50(22):e132. PubMed ID: 36259646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling.
    Zhao W; He X; Hoadley KA; Parker JS; Hayes DN; Perou CM
    BMC Genomics; 2014 Jun; 15(1):419. PubMed ID: 24888378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications.
    Chen Z; Duan X
    Methods Mol Biol; 2011; 733():93-103. PubMed ID: 21431765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of rRNA depletion methods for efficient bacterial mRNA sequencing.
    Wahl A; Huptas C; Neuhaus K
    Sci Rep; 2022 Apr; 12(1):5765. PubMed ID: 35388078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics.
    Miedziak B; Dobieżyńska A; Darżynkiewicz ZM; Bartkowska J; Miszkiewicz J; Kowalska J; Warminski M; Tyras M; Trylska J; Jemielity J; Darzynkiewicz E; Grzela R
    RNA; 2020 Jan; 26(1):58-68. PubMed ID: 31658992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2'-O methylations.
    Abbas YM; Laudenbach BT; Martínez-Montero S; Cencic R; Habjan M; Pichlmair A; Damha MJ; Pelletier J; Nagar B
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2106-E2115. PubMed ID: 28251928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and cost-effective bacterial mRNA sequencing from low input samples through ribosomal RNA depletion.
    Wangsanuwat C; Heom KA; Liu E; O'Malley MA; Dey SS
    BMC Genomics; 2020 Oct; 21(1):717. PubMed ID: 33066726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive 5'-surveillance guards against non-canonical NAD-caps of nuclear mRNAs in yeast.
    Zhang Y; Kuster D; Schmidt T; Kirrmaier D; Nübel G; Ibberson D; Benes V; Hombauer H; Knop M; Jäschke A
    Nat Commun; 2020 Nov; 11(1):5508. PubMed ID: 33139726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.
    Lovejoy AF; Riordan DP; Brown PO
    PLoS One; 2014; 9(10):e110799. PubMed ID: 25353621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interactome capture in yeast.
    Beckmann BM
    Methods; 2017 Apr; 118-119():82-92. PubMed ID: 27993706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast.
    Webb S; Hector RD; Kudla G; Granneman S
    Genome Biol; 2014 Jan; 15(1):R8. PubMed ID: 24393166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap.
    Hudak KA; Bauman JD; Tumer NE
    RNA; 2002 Sep; 8(9):1148-59. PubMed ID: 12358434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production.
    Dunn S; Lombardi O; Cowling VH
    Biochem J; 2017 Feb; 474(3):377-384. PubMed ID: 27934633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1.
    Creamer TJ; Darby MM; Jamonnak N; Schaughency P; Hao H; Wheelan SJ; Corden JL
    PLoS Genet; 2011 Oct; 7(10):e1002329. PubMed ID: 22028667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Easy, Cost-Effective, and Scalable Method to Deplete Human Ribosomal RNA for RNA-seq.
    Baldwin A; Morris AR; Mukherjee N
    Curr Protoc; 2021 Jun; 1(6):e176. PubMed ID: 34165268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common function for mRNA 5' and 3' ends in translation initiation in yeast.
    Tarun SZ; Sachs AB
    Genes Dev; 1995 Dec; 9(23):2997-3007. PubMed ID: 7498795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human.
    Sakuno T; Araki Y; Ohya Y; Kofuji S; Takahashi S; Hoshino S; Katada T
    J Biochem; 2004 Dec; 136(6):805-12. PubMed ID: 15671491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae.
    Freeberg MA; Han T; Moresco JJ; Kong A; Yang YC; Lu ZJ; Yates JR; Kim JK
    Genome Biol; 2013 Feb; 14(2):R13. PubMed ID: 23409723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mRNA decapping activities and their biological roles.
    LaGrandeur TE; Parker R
    Biochimie; 1996; 78(11-12):1049-55. PubMed ID: 9150884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-mediated RNA fragmentation allows robust transcript reassembly upon whole transcriptome RNA-Seq.
    Wery M; Descrimes M; Thermes C; Gautheret D; Morillon A
    Methods; 2013 Sep; 63(1):25-31. PubMed ID: 23523657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.