These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. Gao Y; Cloos M; Liu F; Crozier S; Pike GB; Sun H Neuroimage; 2021 Oct; 240():118404. PubMed ID: 34280526 [TBL] [Abstract][Full Text] [Related]
4. msQSM: Morphology-based self-supervised deep learning for quantitative susceptibility mapping. He J; Peng Y; Fu B; Zhu Y; Wang L; Wang R Neuroimage; 2023 Jul; 275():120181. PubMed ID: 37220799 [TBL] [Abstract][Full Text] [Related]
5. A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM). Wang Z; Xia P; Huang F; Wei H; Hui ES; Mak HK; Cao P Magn Reson Imaging; 2022 May; 88():89-100. PubMed ID: 35124180 [TBL] [Abstract][Full Text] [Related]
6. DF-QSM: Data Fidelity based Hybrid Approach for Improved Quantitative Susceptibility Mapping of the Brain. Paluru N; Susan Mathew R; Yalavarthy PK NMR Biomed; 2024 Sep; 37(9):e5163. PubMed ID: 38649140 [TBL] [Abstract][Full Text] [Related]
7. A preliminary attempt to visualize nigrosome 1 in the substantia nigra for Parkinson's disease at 3T: An efficient susceptibility map-weighted imaging (SMWI) with quantitative susceptibility mapping using deep neural network (QSMnet). Jo M; Oh SH Med Phys; 2020 Mar; 47(3):1151-1160. PubMed ID: 31883389 [TBL] [Abstract][Full Text] [Related]
8. Comparison of quantitative susceptibility mapping methods for iron-sensitive susceptibility imaging at 7T: An evaluation in healthy subjects and patients with Huntington's disease. Yao J; Morrison MA; Jakary A; Avadiappan S; Chen Y; Luitjens J; Glueck J; Driscoll T; Geschwind MD; Nelson AB; Villanueva-Meyer JE; Hess CP; Lupo JM Neuroimage; 2023 Jan; 265():119788. PubMed ID: 36476567 [TBL] [Abstract][Full Text] [Related]
9. xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks. Gao Y; Zhu X; Moffat BA; Glarin R; Wilman AH; Pike GB; Crozier S; Liu F; Sun H NMR Biomed; 2021 Mar; 34(3):e4461. PubMed ID: 33368705 [TBL] [Abstract][Full Text] [Related]
10. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Bilgic B; Pfefferbaum A; Rohlfing T; Sullivan EV; Adalsteinsson E Neuroimage; 2012 Feb; 59(3):2625-35. PubMed ID: 21925274 [TBL] [Abstract][Full Text] [Related]
11. MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping. Feng R; Zhao J; Wang H; Yang B; Feng J; Shi Y; Zhang M; Liu C; Zhang Y; Zhuang J; Wei H Neuroimage; 2021 Oct; 240():118376. PubMed ID: 34246768 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data. Hanspach J; Bollmann S; Grigo J; Karius A; Uder M; Laun FB Magn Reson Med; 2022 Oct; 88(4):1548-1560. PubMed ID: 35713187 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization. Oh G; Bae H; Ahn HS; Park SH; Moon WJ; Ye JC Med Image Anal; 2022 Jul; 79():102477. PubMed ID: 35605505 [TBL] [Abstract][Full Text] [Related]
14. Deep grey matter quantitative susceptibility mapping from small spatial coverages using deep learning. Zhu X; Gao Y; Liu F; Crozier S; Sun H Z Med Phys; 2022 May; 32(2):188-198. PubMed ID: 34312047 [TBL] [Abstract][Full Text] [Related]
15. Comparison of quantitative susceptibility mapping methods on evaluating radiation-induced cerebral microbleeds and basal ganglia at 3T and 7T. Chen Y; Genc O; Poynton CB; Banerjee S; Hess CP; Lupo JM NMR Biomed; 2022 May; 35(5):e4666. PubMed ID: 35075701 [TBL] [Abstract][Full Text] [Related]
16. Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping. Xia P; Hui ES; Chua BJ; Huang F; Wang Z; Zhang H; Yu H; Lau KK; Mak HKF; Cao P J Magn Reson Imaging; 2024 Sep; 60(3):1165-1175. PubMed ID: 38149750 [TBL] [Abstract][Full Text] [Related]
17. Instant tissue field and magnetic susceptibility mapping from MRI raw phase using Laplacian enhanced deep neural networks. Gao Y; Xiong Z; Fazlollahi A; Nestor PJ; Vegh V; Nasrallah F; Winter C; Pike GB; Crozier S; Liu F; Sun H Neuroimage; 2022 Oct; 259():119410. PubMed ID: 35753595 [TBL] [Abstract][Full Text] [Related]
18. Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs. Si W; Guo Y; Zhang Q; Zhang J; Wang Y; Feng Y Front Neurosci; 2023; 17():1165446. PubMed ID: 37383103 [TBL] [Abstract][Full Text] [Related]
19. Quantitative susceptibility mapping using deep neural network: QSMnet. Yoon J; Gong E; Chatnuntawech I; Bilgic B; Lee J; Jung W; Ko J; Jung H; Setsompop K; Zaharchuk G; Kim EY; Pauly J; Lee J Neuroimage; 2018 Oct; 179():199-206. PubMed ID: 29894829 [TBL] [Abstract][Full Text] [Related]
20. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method. Sun H; Ma Y; MacDonald ME; Pike GB Neuroimage; 2018 Oct; 179():166-175. PubMed ID: 29906634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]