These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 36259734)
1. Comparative Genomic Insights into the Evolution of Zhao D; Zhang S; Kumar S; Zhou H; Xue Q; Sun W; Zhou J; Xiang H mSystems; 2022 Dec; 7(6):e0066922. PubMed ID: 36259734 [TBL] [Abstract][Full Text] [Related]
2. Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota. Xie YG; Luo ZH; Fang BZ; Jiao JY; Xie QJ; Cao XR; Qu YN; Qi YL; Rao YZ; Li YX; Liu YH; Li A; Seymour C; Palmer M; Hedlund BP; Li WJ; Hua ZS Microbiome; 2022 Oct; 10(1):172. PubMed ID: 36242054 [TBL] [Abstract][Full Text] [Related]
3. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Sakai HD; Nur N; Kato S; Yuki M; Shimizu M; Itoh T; Ohkuma M; Suwanto A; Kurosawa N Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022241 [TBL] [Abstract][Full Text] [Related]
4. Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea. Zhao D; Zhang S; Chen J; Zhao J; An P; Xiang H ISME J; 2024 Jan; 18(1):. PubMed ID: 38366248 [TBL] [Abstract][Full Text] [Related]
6. Unexpected host dependency of Antarctic Nanohaloarchaeota. Hamm JN; Erdmann S; Eloe-Fadrosh EA; Angeloni A; Zhong L; Brownlee C; Williams TJ; Barton K; Carswell S; Smith MA; Brazendale S; Hancock AM; Allen MA; Raftery MJ; Cavicchioli R Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14661-14670. PubMed ID: 31253704 [TBL] [Abstract][Full Text] [Related]
7. Deciphering Symbiotic Interactions of " Li YX; Rao YZ; Qi YL; Qu YN; Chen YT; Jiao JY; Shu WS; Jiang H; Hedlund BP; Hua ZS; Li WJ mSystems; 2021 Aug; 6(4):e0060621. PubMed ID: 34313464 [TBL] [Abstract][Full Text] [Related]
8. Comparative Genomics Provides Insights into the Genetic Diversity and Evolution of the DPANN Superphylum. Li L; Liu Z; Zhou Z; Zhang M; Meng D; Liu X; Huang Y; Li X; Jiang Z; Zhong S; Drewniak L; Yang Z; Li Q; Liu Y; Nan X; Jiang B; Jiang C; Yin H mSystems; 2021 Aug; 6(4):e0060221. PubMed ID: 34254817 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Diversity and Evolutionary History of the Archaeal Phylum " Kadnikov VV; Savvichev AS; Mardanov AV; Beletsky AV; Chupakov AV; Kokryatskaya NM; Pimenov NV; Ravin NV Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978130 [TBL] [Abstract][Full Text] [Related]
10. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. Zhang IH; Borer B; Zhao R; Wilbert S; Newman DK; Babbin AR mBio; 2024 Mar; 15(3):e0291823. PubMed ID: 38380943 [TBL] [Abstract][Full Text] [Related]
11. Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Aouad M; Taib N; Oudart A; Lecocq M; Gouy M; Brochier-Armanet C Mol Phylogenet Evol; 2018 Oct; 127():46-54. PubMed ID: 29684598 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic Discovery of " Rao YZ; Li YX; Li ZW; Qu YN; Qi YL; Jiao JY; Shu WS; Hua ZS; Li WJ mSystems; 2023 Apr; 8(2):e0125222. PubMed ID: 36943058 [TBL] [Abstract][Full Text] [Related]
13. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Reva O; Messina E; La Cono V; Crisafi F; Smedile F; La Spada G; Marturano L; Selivanova EA; Rohde M; Krupovic M; Yakimov MM Front Microbiol; 2023; 14():1182464. PubMed ID: 37323909 [TBL] [Abstract][Full Text] [Related]
14. Discovery of the Streamlined Haloarchaeon Durán-Viseras A; Sánchez-Porro C; Viver T; Konstantinidis KT; Ventosa A mSystems; 2023 Apr; 8(2):e0119822. PubMed ID: 36943059 [TBL] [Abstract][Full Text] [Related]
15. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Baker BA; Gutiérrez-Preciado A; Rodríguez Del Río Á; McCarthy CGP; López-García P; Huerta-Cepas J; Susko E; Roger AJ; Eme L; Moreira D Nat Microbiol; 2024 Apr; 9(4):964-975. PubMed ID: 38519541 [TBL] [Abstract][Full Text] [Related]
16. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Dombrowski N; Williams TA; Sun J; Woodcroft BJ; Lee JH; Minh BQ; Rinke C; Spang A Nat Commun; 2020 Aug; 11(1):3939. PubMed ID: 32770105 [TBL] [Abstract][Full Text] [Related]
17. Metagenomic Insights into the Metabolic and Ecological Functions of Abundant Deep-Sea Hydrothermal Vent DPANN Archaea. Cai R; Zhang J; Liu R; Sun C Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608296 [TBL] [Abstract][Full Text] [Related]
18. Dynamics and ecological distributions of the Archaea microbiome from inland saline lakes (Monegros Desert, Spain). Menéndez-Serra M; Ontiveros VJ; Triadó-Margarit X; Alonso D; Casamayor EO FEMS Microbiol Ecol; 2020 Mar; 96(3):. PubMed ID: 32006018 [TBL] [Abstract][Full Text] [Related]
19. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. Dombrowski N; Lee JH; Williams TA; Offre P; Spang A FEMS Microbiol Lett; 2019 Jan; 366(2):. PubMed ID: 30629179 [TBL] [Abstract][Full Text] [Related]
20. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India. Pal S; Biswas R; Misra A; Sar A; Banerjee S; Mukherjee P; Dam B Extremophiles; 2020 Nov; 24(6):875-885. PubMed ID: 32955600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]