BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36259734)

  • 1. Comparative Genomic Insights into the Evolution of
    Zhao D; Zhang S; Kumar S; Zhou H; Xue Q; Sun W; Zhou J; Xiang H
    mSystems; 2022 Dec; 7(6):e0066922. PubMed ID: 36259734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota.
    Xie YG; Luo ZH; Fang BZ; Jiao JY; Xie QJ; Cao XR; Qu YN; Qi YL; Rao YZ; Li YX; Liu YH; Li A; Seymour C; Palmer M; Hedlund BP; Li WJ; Hua ZS
    Microbiome; 2022 Oct; 10(1):172. PubMed ID: 36242054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses.
    Sakai HD; Nur N; Kato S; Yuki M; Shimizu M; Itoh T; Ohkuma M; Suwanto A; Kurosawa N
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea.
    Zhao D; Zhang S; Chen J; Zhao J; An P; Xiang H
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38366248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiosis between
    Kuroda K; Yamamoto K; Nakai R; Hirakata Y; Kubota K; Nobu MK; Narihiro T
    mBio; 2022 Oct; 13(5):e0171122. PubMed ID: 36043790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected host dependency of Antarctic Nanohaloarchaeota.
    Hamm JN; Erdmann S; Eloe-Fadrosh EA; Angeloni A; Zhong L; Brownlee C; Williams TJ; Barton K; Carswell S; Smith MA; Brazendale S; Hancock AM; Allen MA; Raftery MJ; Cavicchioli R
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14661-14670. PubMed ID: 31253704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering Symbiotic Interactions of "
    Li YX; Rao YZ; Qi YL; Qu YN; Chen YT; Jiao JY; Shu WS; Jiang H; Hedlund BP; Hua ZS; Li WJ
    mSystems; 2021 Aug; 6(4):e0060621. PubMed ID: 34313464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Genomics Provides Insights into the Genetic Diversity and Evolution of the DPANN Superphylum.
    Li L; Liu Z; Zhou Z; Zhang M; Meng D; Liu X; Huang Y; Li X; Jiang Z; Zhong S; Drewniak L; Yang Z; Li Q; Liu Y; Nan X; Jiang B; Jiang C; Yin H
    mSystems; 2021 Aug; 6(4):e0060221. PubMed ID: 34254817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Diversity and Evolutionary History of the Archaeal Phylum "
    Kadnikov VV; Savvichev AS; Mardanov AV; Beletsky AV; Chupakov AV; Kokryatskaya NM; Pimenov NV; Ravin NV
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential.
    Zhang IH; Borer B; Zhao R; Wilbert S; Newman DK; Babbin AR
    mBio; 2024 Mar; 15(3):e0291823. PubMed ID: 38380943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme halophilic archaea derive from two distinct methanogen Class II lineages.
    Aouad M; Taib N; Oudart A; Lecocq M; Gouy M; Brochier-Armanet C
    Mol Phylogenet Evol; 2018 Oct; 127():46-54. PubMed ID: 29684598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic Discovery of "
    Rao YZ; Li YX; Li ZW; Qu YN; Qi YL; Jiao JY; Shu WS; Hua ZS; Li WJ
    mSystems; 2023 Apr; 8(2):e0125222. PubMed ID: 36943058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional diversity of nanohaloarchaea within xylan-degrading consortia.
    Reva O; Messina E; La Cono V; Crisafi F; Smedile F; La Spada G; Marturano L; Selivanova EA; Rohde M; Krupovic M; Yakimov MM
    Front Microbiol; 2023; 14():1182464. PubMed ID: 37323909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of the Streamlined Haloarchaeon
    Durán-Viseras A; Sánchez-Porro C; Viver T; Konstantinidis KT; Ventosa A
    mSystems; 2023 Apr; 8(2):e0119822. PubMed ID: 36943059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments.
    Baker BA; Gutiérrez-Preciado A; Rodríguez Del Río Á; McCarthy CGP; López-García P; Huerta-Cepas J; Susko E; Roger AJ; Eme L; Moreira D
    Nat Microbiol; 2024 Apr; 9(4):964-975. PubMed ID: 38519541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution.
    Dombrowski N; Williams TA; Sun J; Woodcroft BJ; Lee JH; Minh BQ; Rinke C; Spang A
    Nat Commun; 2020 Aug; 11(1):3939. PubMed ID: 32770105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic Insights into the Metabolic and Ecological Functions of Abundant Deep-Sea Hydrothermal Vent DPANN Archaea.
    Cai R; Zhang J; Liu R; Sun C
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and ecological distributions of the Archaea microbiome from inland saline lakes (Monegros Desert, Spain).
    Menéndez-Serra M; Ontiveros VJ; Triadó-Margarit X; Alonso D; Casamayor EO
    FEMS Microbiol Ecol; 2020 Mar; 96(3):. PubMed ID: 32006018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea.
    Dombrowski N; Lee JH; Williams TA; Offre P; Spang A
    FEMS Microbiol Lett; 2019 Jan; 366(2):. PubMed ID: 30629179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India.
    Pal S; Biswas R; Misra A; Sar A; Banerjee S; Mukherjee P; Dam B
    Extremophiles; 2020 Nov; 24(6):875-885. PubMed ID: 32955600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.