These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36259771)

  • 1. Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions.
    Hyttinen N; Pihlajamäki A; Häkkinen H
    J Phys Chem Lett; 2022 Oct; 13(42):9928-9933. PubMed ID: 36259771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-Geometry Dependency of Molecular Structures: A Multistep Machine Learning Approach.
    Moharreri E; Pardakhti M; Srivastava R; Suib SL
    ACS Comb Sci; 2019 Sep; 21(9):614-621. PubMed ID: 31390176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory.
    Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM
    J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of SM8 on a test to predict small-molecule solvation free energies.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2008 Jul; 112(29):8651-5. PubMed ID: 18582013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining machine learning and quantum mechanics yields more chemically aware molecular descriptors for medicinal chemistry applications.
    Tortorella S; Carosati E; Sorbi G; Bocci G; Cross S; Cruciani G; Storchi L
    J Comput Chem; 2021 Nov; 42(29):2068-2078. PubMed ID: 34410004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning based intramolecular potential for a flexible organic molecule.
    Cole DJ; Mones L; Csányi G
    Faraday Discuss; 2020 Dec; 224(0):247-264. PubMed ID: 32955056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet?
    Roy D; Dutta D; Wishart DS; Kovalenko A
    J Comput Aided Mol Des; 2021 Feb; 35(2):261-269. PubMed ID: 33392947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.
    Salahinejad M; Le TC; Winkler DA
    J Chem Inf Model; 2013 Jan; 53(1):223-9. PubMed ID: 23215043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen.
    Kuwata M; Zorn SR; Martin ST
    Environ Sci Technol; 2012 Jan; 46(2):787-94. PubMed ID: 22145565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient computational methods for accurately predicting reduction potentials of organic molecules.
    Speelman AL; Gillmore JG
    J Phys Chem A; 2008 Jun; 112(25):5684-90. PubMed ID: 18564833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments.
    Kipka U; Di Toro DM
    Environ Toxicol Chem; 2011 Sep; 30(9):2013-22. PubMed ID: 21721035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MolE8: finding DFT potential energy surface minima values from force-field optimised organic molecules with new machine learning representations.
    Lee S; Ermanis K; Goodman JM
    Chem Sci; 2022 Jun; 13(24):7204-7214. PubMed ID: 35799803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
    Unzueta PA; Greenwell CS; Beran GJO
    J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides.
    Yeo C; Nguyen M; Wang LP
    J Phys Chem A; 2022 Oct; 126(42):7566-7577. PubMed ID: 36251007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of enthalpies of formation for a large set of organic compounds.
    Liu CX; Wang HX; Li ZR; Zhou CW; Rao HB; Li XY
    J Comput Chem; 2010 Nov; 31(14):2585-92. PubMed ID: 20740557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A local environment descriptor for machine-learned density functional theory at the generalized gradient approximation level.
    Ji H; Jung Y
    J Chem Phys; 2018 Jun; 148(24):241742. PubMed ID: 29960349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.