BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36259986)

  • 1. Shape memory polyurethane potentially used for vascular stents with water-induced stiffening and improved hemocompatibility.
    Yang R; Liu W; Wang A; Deng X; Feng Y; Zhang Q; Li Z; Luo F; Li J; Tan H
    J Mater Chem B; 2022 Nov; 10(43):8918-8930. PubMed ID: 36259986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains.
    Yang R; Liu W; Song N; Li X; Li Z; Luo F; Li J; Tan H
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200490. PubMed ID: 35836315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers.
    Chien YC; Chuang WT; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites.
    Babaie A; Rezaei M; Sofla RLM
    J Mech Behav Biomed Mater; 2019 Aug; 96():53-68. PubMed ID: 31029995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems.
    Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro.
    Cabanlit M; Maitland D; Wilson T; Simon S; Wun T; Gershwin ME; Van de Water J
    Macromol Biosci; 2007 Jan; 7(1):48-55. PubMed ID: 17238230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR.
    Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H
    J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Memory Polyurethanes Based on Zwitterionic Hard Segments.
    Fu S; Ren H; Ge Z; Zhuo H; Chen S
    Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering.
    Pfau MR; Grunlan MA
    J Mater Chem B; 2021 Jun; 9(21):4287-4297. PubMed ID: 33969849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible thermo- and magneto-responsive shape-memory polyurethane bionanocomposites.
    Calvo-Correas T; Shirole A; Crippa F; Fink A; Weder C; Corcuera MA; Eceiza A
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():658-668. PubMed ID: 30678953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azo-Functionalized Thermoplastic Polyurethane for Light-Driven Shape Memory Materials.
    Pan B; Park SM; Ying WB; Yoon DK; Lee KJ
    Macromol Rapid Commun; 2023 Feb; 44(3):e2200650. PubMed ID: 36350231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Chemical Composition on the Shape Memory Property of Poly(dl-lactide-
    Han L; Wang Y; Wu L; Wu Z; He Y; Mao H; Gu Z
    ACS Biomater Sci Eng; 2023 Jan; 9(1):520-530. PubMed ID: 36459430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Type of Photo-Thermo Staged-Responsive Shape-Memory Polyurethanes Network.
    Yang J; Wen H; Zhuo H; Chen S; Ban J
    Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property.
    Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.