These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36260028)

  • 21.
    Rahman MM; Liu C; Bisz E; Dziuk B; Lalancette R; Wang Q; Chen H; Szostak R; Szostak M
    J Org Chem; 2020 Apr; 85(8):5475-5485. PubMed ID: 32159351
    [No Abstract]   [Full Text] [Related]  

  • 22. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.
    Liu C; Szostak M
    Chemistry; 2017 May; 23(30):7157-7173. PubMed ID: 27813178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases?
    V Komarov I; Yu Ishchenko A; Hovtvianitsa A; Stepanenko V; Kharchenko S; D Bond A; J Kirby A
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30764512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Michael addition of amines and thiols to dehydroalanine amides: a remarkable rate acceleration in water.
    Naidu BN; Sorenson ME; Connolly TP; Ueda Y
    J Org Chem; 2003 Dec; 68(26):10098-102. PubMed ID: 14682706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aldehyde capture ligation for synthesis of native peptide bonds.
    Raj M; Wu H; Blosser SL; Vittoria MA; Arora PS
    J Am Chem Soc; 2015 Jun; 137(21):6932-40. PubMed ID: 25966041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transition-metal-free O-, S-, and N-arylation of alcohols, thiols, amides, amines, and related heterocycles.
    Cano R; Ramón DJ; Yus M
    J Org Chem; 2011 Jan; 76(2):654-60. PubMed ID: 21175155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.
    Nakajima M; Oda Y; Wada T; Minamikawa R; Shirokane K; Sato T; Chida N
    Chemistry; 2014 Dec; 20(52):17565-71. PubMed ID: 25345400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.
    Papadopoulos GN; Kokotos CG
    J Org Chem; 2016 Aug; 81(16):7023-8. PubMed ID: 27227271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands.
    Zi G; Zhang F; Song H
    Chem Commun (Camb); 2010 Sep; 46(34):6296-8. PubMed ID: 20668747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.
    Ichikawa A; Ono H; Mikata Y
    Molecules; 2015 Jul; 20(7):12880-900. PubMed ID: 26193245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of chiral polyazamacrocycles of variable ring size.
    Kamioka S; Sugiyama S; Takahashi T; Doi T
    Org Biomol Chem; 2010 Jun; 8(11):2529-36. PubMed ID: 20358124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Most Twisted Acyclic Amides: Structures and Reactivity.
    Liu C; Shi S; Liu Y; Liu R; Lalancette R; Szostak R; Szostak M
    Org Lett; 2018 Dec; 20(24):7771-7774. PubMed ID: 30525667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.
    Kumar S; Sharma R; Garcia M; Kamel J; McCarthy C; Muth A; Phanstiel O
    J Org Chem; 2012 Dec; 77(23):10835-45. PubMed ID: 23190119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex.
    Pandey P; Bera JK
    Chem Commun (Camb); 2021 Sep; 57(73):9204-9207. PubMed ID: 34519312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines.
    Štrukil V; Bartolec B; Portada T; Đilović I; Halasz I; Margetić D
    Chem Commun (Camb); 2012 Dec; 48(99):12100-2. PubMed ID: 23135220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amide and amine nucleophiles in polar radical crossover cycloadditions: synthesis of γ-lactams and pyrrolidines.
    Gesmundo NJ; Grandjean JM; Nicewicz DA
    Org Lett; 2015 Mar; 17(5):1316-9. PubMed ID: 25695366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold.
    Ocampo Gutiérrez de Velasco DA; Su A; Zhai L; Kinoshita S; Otani Y; Ohwada T
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30223585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transamidation of N-acyl-glutarimides with amines.
    Liu Y; Achtenhagen M; Liu R; Szostak M
    Org Biomol Chem; 2018 Feb; 16(8):1322-1329. PubMed ID: 29393316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism.
    Hara R; Hirai K; Suzuki S; Kino K
    Sci Rep; 2018 Feb; 8(1):2950. PubMed ID: 29440726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.