These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36260591)
1. BRMCF: Binary Relevance and MLSMOTE Based Computational Framework to Predict Drug Functions From Chemical and Biological Properties of Drugs. Das P; Thakran Y; Anal SRN; Pal V; Yadav A IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1761-1773. PubMed ID: 36260591 [TBL] [Abstract][Full Text] [Related]
2. Integrative analysis of chemical properties and functions of drugs for adverse drug reaction prediction based on multi-label deep neural network. Das P; Yogita ; Pal V J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 35585715 [TBL] [Abstract][Full Text] [Related]
3. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery. Lin S; Shi C; Chen J BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406 [TBL] [Abstract][Full Text] [Related]
5. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation. Lin X; Quan Z; Wang ZJ; Guo Y; Zeng X; Yu PS IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):932-943. PubMed ID: 35951570 [TBL] [Abstract][Full Text] [Related]
6. BE-DTI': Ensemble framework for drug target interaction prediction using dimensionality reduction and active learning. Sharma A; Rani R Comput Methods Programs Biomed; 2018 Oct; 165():151-162. PubMed ID: 30337070 [TBL] [Abstract][Full Text] [Related]
7. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing. Redkar S; Mondal S; Joseph A; Hareesha KS Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548 [TBL] [Abstract][Full Text] [Related]
8. Diabetes mellitus risk prediction in the presence of class imbalance using flexible machine learning methods. Sadeghi S; Khalili D; Ramezankhani A; Mansournia MA; Parsaeian M BMC Med Inform Decis Mak; 2022 Feb; 22(1):36. PubMed ID: 35139846 [TBL] [Abstract][Full Text] [Related]
9. RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039 [TBL] [Abstract][Full Text] [Related]
10. A deep neural network-based approach for prediction of mutagenicity of compounds. Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950 [TBL] [Abstract][Full Text] [Related]
11. Multimodal multi-task deep neural network framework for kinase-target prediction. Hua Y; Luo L; Qiu H; Huang D; Zhao Y; Liu H; Lu T; Chen Y; Zhang Y; Jiang Y Mol Divers; 2023 Dec; 27(6):2491-2503. PubMed ID: 36369613 [TBL] [Abstract][Full Text] [Related]
12. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
13. Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction. Azlim Khan AK; Ahamed Hassain Malim NH Molecules; 2023 Feb; 28(4):. PubMed ID: 36838652 [TBL] [Abstract][Full Text] [Related]
14. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Chu Y; Shan X; Chen T; Jiang M; Wang Y; Wang Q; Salahub DR; Xiong Y; Wei DQ Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32964234 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-driven prediction of drug mechanism of action from large-scale chemical-genetic interaction profiles. Liu C; Hogan AM; Sturm H; Khan MW; Islam MM; Rahman ASMZ; Davis R; Cardona ST; Hu P J Cheminform; 2022 Mar; 14(1):12. PubMed ID: 35279211 [TBL] [Abstract][Full Text] [Related]
16. Machine learning prediction of oncology drug targets based on protein and network properties. Dezső Z; Ceccarelli M BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238 [TBL] [Abstract][Full Text] [Related]
17. The comparative experimental study of rehabilitation program decision for spinal cord injury based on electronic medical records. Qie B; Guo X; Chen W; Yu S; Wang Z Heliyon; 2024 Aug; 10(16):e36121. PubMed ID: 39253185 [TBL] [Abstract][Full Text] [Related]
18. SSELM-neg: spherical search-based extreme learning machine for drug-target interaction prediction. Hu L; Fu C; Ren Z; Cai Y; Yang J; Xu S; Xu W; Tang D BMC Bioinformatics; 2023 Feb; 24(1):38. PubMed ID: 36737694 [TBL] [Abstract][Full Text] [Related]
19. A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study. Jamthikar A; Gupta D; Johri AM; Mantella LE; Saba L; Suri JS Comput Biol Med; 2022 Jan; 140():105102. PubMed ID: 34973521 [TBL] [Abstract][Full Text] [Related]
20. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]