BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36260951)

  • 1. Multi-channel auto-encoders for learning domain invariant representations enabling superior classification of histopathology images.
    Moyes A; Gault R; Zhang K; Ming J; Crookes D; Wang J
    Med Image Anal; 2023 Jan; 83():102640. PubMed ID: 36260951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacked Convolutional Denoising Auto-Encoders for Feature Representation.
    Du B; Xiong W; Wu J; Zhang L; Zhang L; Tao D
    IEEE Trans Cybern; 2017 Apr; 47(4):1017-1027. PubMed ID: 26992191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Domain-Invariant Representations of Histological Images.
    Lafarge MW; Pluim JPW; Eppenhof KAJ; Veta M
    Front Med (Lausanne); 2019; 6():162. PubMed ID: 31380377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting and inserting knowledge into stacked denoising auto-encoders.
    Yu J; Liu G
    Neural Netw; 2021 May; 137():31-42. PubMed ID: 33545610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning domain invariant representations by joint Wasserstein distance minimization.
    Andéol L; Kawakami Y; Wada Y; Kanamori T; Müller KR; Montavon G
    Neural Netw; 2023 Oct; 167():233-243. PubMed ID: 37660672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology.
    Otálora S; Atzori M; Andrearczyk V; Khan A; Müller H
    Front Bioeng Biotechnol; 2019; 7():198. PubMed ID: 31508414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Domain Shift for Deep Learning in Histopathology.
    Stacke K; Eilertsen G; Unger J; Lundstrom C
    IEEE J Biomed Health Inform; 2021 Feb; 25(2):325-336. PubMed ID: 33085623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learned spike representations and sorting via an ensemble of auto-encoders.
    Eom J; Park IY; Kim S; Jang H; Park S; Huh Y; Hwang D
    Neural Netw; 2021 Feb; 134():131-142. PubMed ID: 33307279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hospital-Agnostic Image Representation Learning in Digital Pathology.
    Sikaroudi M; Rahnamayan S; Tizhoosh HR
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3055-3058. PubMed ID: 36086646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised Domain Adaptation to Classify Medical Images Using Zero-Bias Convolutional Auto-Encoders and Context-Based Feature Augmentation.
    Ahn E; Kumar A; Fulham M; Feng D; Kim J
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2385-2394. PubMed ID: 32012005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep bag-of-features model for the classification of melanomas in dermoscopy images.
    Sabbaghi S; Aldeen M; Garnavi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1369-1372. PubMed ID: 28268580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformer-based unsupervised contrastive learning for histopathological image classification.
    Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X
    Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Task Multi-Domain Learning for Digital Staining and Classification of Leukocytes.
    Tomczak A; Ilic S; Marquardt G; Engel T; Forster F; Navab N; Albarqouni S
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2897-2910. PubMed ID: 33347406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Hierarchical Auditory Representation
    Wang L; Liu H; Zhang X; Zhao S; Guo L; Han J; Hu X
    Front Neurosci; 2022; 16():843988. PubMed ID: 35401085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation-Guided Representation Learning.
    Kang Z; Lu X; Liang J; Bai K; Xu Z
    Neural Netw; 2020 Nov; 131():93-102. PubMed ID: 32763763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph Regularized Auto-Encoders for Image Representation.
    Yiyi Liao ; Yue Wang ; Yong Liu
    IEEE Trans Image Process; 2017 Jun; 26(6):2839-2852. PubMed ID: 28113587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology.
    Tellez D; Litjens G; Bándi P; Bulten W; Bokhorst JM; Ciompi F; van der Laak J
    Med Image Anal; 2019 Dec; 58():101544. PubMed ID: 31466046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Invariant Representations from EEG via Adversarial Inference.
    Özdenizci O; Wang YE; Koike-Akino T; ErdoĞmuŞ D
    IEEE Access; 2020; 8():27074-27085. PubMed ID: 33747669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.