These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36261265)

  • 1. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
    Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ
    J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics.
    Lukashkina VA; Levic S; Lukashkin AN; Strenzke N; Russell IJ
    Nat Commun; 2017 Feb; 8():14530. PubMed ID: 28220769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism.
    Mistrík P; Ashmore JF
    J Assoc Res Otolaryngol; 2010 Dec; 11(4):559-71. PubMed ID: 20635191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification.
    Santos-Sacchi J; Bai JP; Navaratnam D
    J Neurosci; 2023 Apr; 43(14):2460-2468. PubMed ID: 36868859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance.
    Santos-Sacchi J; Iwasa KH; Tan W
    J Gen Physiol; 2019 Dec; 151(12):1369-1385. PubMed ID: 31676485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The frequency limit of outer hair cell motility measured in vivo.
    Vavakou A; Cooper NP; van der Heijden M
    Elife; 2019 Sep; 8():. PubMed ID: 31547906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo.
    Dewey JB; Altoè A; Shera CA; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
    Santos-Sacchi J; Tan W
    J Neurosci; 2018 Jun; 38(24):5495-5506. PubMed ID: 29899032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions.
    Yu N; Zhao HB
    PLoS One; 2009 Nov; 4(11):e7923. PubMed ID: 19936276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetics Reveals Roles for Supporting Cells in Force Transmission to and From Outer Hair Cells in the Mouse Cochlea.
    Lukashkina VA; Levic S; Simões P; Xu Z; Li Y; Haugen T; Zuo J; Lukashin AN; Russell IJ
    J Neurosci; 2024 Jan; 44(4):. PubMed ID: 38050104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear outer hair cells in a dominant-negative connexin26 mutant mouse preserve non-linear capacitance in spite of impaired distortion product otoacoustic emission.
    Minekawa A; Abe T; Inoshita A; Iizuka T; Kakehata S; Narui Y; Koike T; Kamiya K; Okamura HO; Shinkawa H; Ikeda K
    Neuroscience; 2009 Dec; 164(3):1312-9. PubMed ID: 19712724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromotility of outer hair cells from the cochlea of the echolocating bat, Carollia perspicillata.
    Reuter G; Kössl M; Hemmert W; Preyer S; Zimmermann U; Zenner HP
    J Comp Physiol A; 1994 Oct; 175(4):449-55. PubMed ID: 7965917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells.
    Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C
    J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea.
    Altoè A; Shera CA
    J Assoc Res Otolaryngol; 2023 Apr; 24(2):129-145. PubMed ID: 36725778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli.
    Fallah E; Strimbu CE; Olson ES
    Hear Res; 2019 Jun; 377():271-281. PubMed ID: 31015062
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Lukashkina VA; Levic S; Simões P; Xu Z; DiGuiseppi JA; Zuo J; Lukashin AN; Russell IJ
    J Neurosci; 2022 Jul; 42(29):5660-5671. PubMed ID: 35732495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca
    Jeng JY; Harasztosi C; Carlton AJ; Corns LF; Marchetta P; Johnson SL; Goodyear RJ; Legan KP; Rüttiger L; Richardson GP; Marcotti W
    J Physiol; 2021 Apr; 599(7):2015-2036. PubMed ID: 33559882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cochlear outer hair cell speed paradox.
    Rabbitt RD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21880-21888. PubMed ID: 32848062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency motility of outer hair cells and the cochlear amplifier.
    Dallos P; Evans BN
    Science; 1995 Mar; 267(5206):2006-9. PubMed ID: 7701325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.