These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 36261441)

  • 21. In vivo bioelectronic nose using transgenic mice for specific odor detection.
    Gao K; Li S; Zhuang L; Qin Z; Zhang B; Huang L; Wang P
    Biosens Bioelectron; 2018 Apr; 102():150-156. PubMed ID: 29128717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separate But Interactive Parallel Olfactory Processing Streams Governed by Different Types of GABAergic Feedback Neurons in the Mushroom Body of a Basal Insect.
    Takahashi N; Nishino H; Domae M; Mizunami M
    J Neurosci; 2019 Oct; 39(44):8690-8704. PubMed ID: 31548236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.
    Cadiou H; Aoudé I; Tazir B; Molinas A; Fenech C; Meunier N; Grosmaitre X
    J Neurosci; 2014 Apr; 34(14):4857-70. PubMed ID: 24695705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior.
    Breton-Provencher V; Saghatelyan A
    Behav Brain Res; 2012 Feb; 227(2):480-9. PubMed ID: 21843557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning.
    Sakamoto M; Ieki N; Miyoshi G; Mochimaru D; Miyachi H; Imura T; Yamaguchi M; Fishell G; Mori K; Kageyama R; Imayoshi I
    J Neurosci; 2014 Apr; 34(17):5788-99. PubMed ID: 24760839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish.
    Shao X; Lakhina V; Dang P; Cheng RP; Marcaccio CL; Raper JA
    Neural Dev; 2017 Oct; 12(1):18. PubMed ID: 29020985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in peripheral sensory input to the olfactory bulb between male and female mice.
    Kass MD; Czarnecki LA; Moberly AH; McGann JP
    Sci Rep; 2017 Apr; 7():45851. PubMed ID: 28443629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats.
    Carey RM; Verhagen JV; Wesson DW; Pírez N; Wachowiak M
    J Neurophysiol; 2009 Feb; 101(2):1073-88. PubMed ID: 19091924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A circuit supporting concentration-invariant odor perception in Drosophila.
    Asahina K; Louis M; Piccinotti S; Vosshall LB
    J Biol; 2009; 8(1):9. PubMed ID: 19171076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A critical time window for the recruitment of bulbar newborn neurons by olfactory discrimination learning.
    Belnoue L; Grosjean N; Abrous DN; Koehl M
    J Neurosci; 2011 Jan; 31(3):1010-6. PubMed ID: 21248125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles.
    Terni B; Pacciolla P; Masanas H; Gorostiza P; Llobet A
    J Comp Neurol; 2017 Dec; 525(17):3769-3783. PubMed ID: 28815589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice.
    Kikuta S; Sakamoto T; Nagayama S; Kanaya K; Kinoshita M; Kondo K; Tsunoda K; Mori K; Yamasoba T
    J Neurosci; 2015 Feb; 35(6):2657-73. PubMed ID: 25673857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principles of glomerular organization in the human olfactory bulb--implications for odor processing.
    Maresh A; Rodriguez Gil D; Whitman MC; Greer CA
    PLoS One; 2008 Jul; 3(7):e2640. PubMed ID: 18612420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A large-scale analysis of odor coding in the olfactory epithelium.
    Nara K; Saraiva LR; Ye X; Buck LB
    J Neurosci; 2011 Jun; 31(25):9179-91. PubMed ID: 21697369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.
    Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M
    J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental regulation of olfactory circuit formation in mice.
    Sakano H
    Dev Growth Differ; 2020 May; 62(4):199-213. PubMed ID: 32112394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons.
    Dang P; Fisher SA; Stefanik DJ; Kim J; Raper JA
    PLoS Genet; 2018 Jan; 14(1):e1007164. PubMed ID: 29385124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional differences in mitral cell development in mouse olfactory bulb.
    Nguyen UP; Imamura F
    J Comp Neurol; 2019 Oct; 527(14):2233-2244. PubMed ID: 30864157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Odorant responsiveness of embryonic mouse olfactory sensory neurons expressing the odorant receptors S1 or MOR23.
    Lam RS; Mombaerts P
    Eur J Neurosci; 2013 Jul; 38(2):2210-7. PubMed ID: 23682908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.