These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36261461)
1. Study of a new method for the instant preparation of ice particles in ice abrasive air jet. Li Z; Zhu Y; Liu Y; Cao C; Wu J; Huang F Sci Rep; 2022 Oct; 12(1):17497. PubMed ID: 36261461 [TBL] [Abstract][Full Text] [Related]
2. Experimental study on the freezing process of water droplets for ice air jet technology. Jingru H; Jingbin L; Zhongwei H; Kang C; Haojun X Sci Rep; 2024 Feb; 14(1):3259. PubMed ID: 38332116 [TBL] [Abstract][Full Text] [Related]
3. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets. McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478 [TBL] [Abstract][Full Text] [Related]
4. Study on the key parameters of ice particle air jet ejector structure. Man W; Zehua N; Liu Y Sci Rep; 2024 Aug; 14(1):17831. PubMed ID: 39090240 [TBL] [Abstract][Full Text] [Related]
5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. Knopf DA; Rigg YJ J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213 [TBL] [Abstract][Full Text] [Related]
6. Freezing of water and melting of ice: theoretical modeling at the nanoscale. Ma Y; Dong P; He Y; Zhao Z; Zhang X; Yang J; Yan J; Li W Nanoscale; 2023 Nov; 15(44):18004-18014. PubMed ID: 37909355 [TBL] [Abstract][Full Text] [Related]
7. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity. Singha SK; Das PK; Maiti B Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of supercooled droplet freezing on surfaces. Jung S; Tiwari MK; Doan NV; Poulikakos D Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625 [TBL] [Abstract][Full Text] [Related]
9. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation. Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606 [TBL] [Abstract][Full Text] [Related]
10. Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing. Wang L; Dai J; Hao P; He F; Zhang X ACS Omega; 2020 Feb; 5(7):3322-3332. PubMed ID: 32118147 [TBL] [Abstract][Full Text] [Related]
11. Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance. Shen Y; Xie X; Xie Y; Tao J; Jiang J; Chen H; Lu Y; Xu Y Phys Chem Chem Phys; 2019 Sep; 21(36):19785-19794. PubMed ID: 31478533 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. Chu F; Wu X; Wang L ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256 [TBL] [Abstract][Full Text] [Related]
13. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing. Buttersack T; Bauerecker S J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582 [TBL] [Abstract][Full Text] [Related]
14. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability. Hu A; Yuan Q; Guo K; Wang Z; Liu D Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421505 [TBL] [Abstract][Full Text] [Related]
15. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze. Liu XY; Du N J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714 [TBL] [Abstract][Full Text] [Related]
16. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols. DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263 [TBL] [Abstract][Full Text] [Related]
17. Hybrid integral transform analysis of supercooled droplets solidification. Carvalho IS; Cotta RM; Naveira-Cotta CP; Tiwari MK Proc Math Phys Eng Sci; 2021 Apr; 477(2248):20200874. PubMed ID: 35153554 [TBL] [Abstract][Full Text] [Related]
18. Quantification of the Ice Nucleation Activity of Ice-Binding Proteins Using a Microliter Droplet Freezing Experiment. Whale TF Methods Mol Biol; 2024; 2730():121-134. PubMed ID: 37943455 [TBL] [Abstract][Full Text] [Related]
19. Does liquid-liquid phase separation impact ice nucleation in mixed polyethylene glycol and ammonium sulfate droplets? Yao Y; Alpert PA; Zuend A; Wang B Phys Chem Chem Phys; 2022 Dec; 25(1):80-95. PubMed ID: 36281770 [TBL] [Abstract][Full Text] [Related]
20. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. Knopf DA; Alpert PA Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]