These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36261527)

  • 41. Radiative conductivity in the Earth's lower mantle.
    Goncharov AF; Haugen BD; Struzhkin VV; Beck P; Jacobsen SD
    Nature; 2008 Nov; 456(7219):231-4. PubMed ID: 19005553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A nearly water-saturated mantle transition zone inferred from mineral viscosity.
    Fei H; Yamazaki D; Sakurai M; Miyajima N; Ohfuji H; Katsura T; Yamamoto T
    Sci Adv; 2017 Jun; 3(6):e1603024. PubMed ID: 28630912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perovskite in Earth's deep interior.
    Hirose K; Sinmyo R; Hernlund J
    Science; 2017 Nov; 358(6364):734-738. PubMed ID: 29123059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite.
    Bindi L; Shim SH; Sharp TG; Xie X
    Sci Adv; 2020 Jan; 6(2):eaay7893. PubMed ID: 31950086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Periclase deforms more slowly than bridgmanite under mantle conditions.
    Cordier P; Gouriet K; Weidner T; Van Orman J; Castelnau O; Jackson JM; Carrez P
    Nature; 2023 Jan; 613(7943):303-307. PubMed ID: 36631648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.
    Rohrbach A; Schmidt MW
    Nature; 2011 Apr; 472(7342):209-12. PubMed ID: 21441908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data.
    Murakami M; Ohishi Y; Hirao N; Hirose K
    Nature; 2012 May; 485(7396):90-4. PubMed ID: 22552097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elastic shear anisotropy of ferropericlase in Earth's lower mantle.
    Marquardt H; Speziale S; Reichmann HJ; Frost DJ; Schilling FR; Garnero EJ
    Science; 2009 Apr; 324(5924):224-6. PubMed ID: 19359580
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discovery of davemaoite, CaSiO
    Tschauner O; Huang S; Yang S; Humayun M; Liu W; Gilbert Corder SN; Bechtel HA; Tischler J; Rossman GR
    Science; 2021 Nov; 374(6569):891-894. PubMed ID: 34762475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water in Earth's lower mantle.
    Murakami M; Hirose K; Yurimoto H; Nakashima S; Takafuji N
    Science; 2002 Mar; 295(5561):1885-7. PubMed ID: 11884752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle.
    Wentzcovitch RM; Karki BB; Cococcioni M; de Gironcoli S
    Phys Rev Lett; 2004 Jan; 92(1):018501. PubMed ID: 14754029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elasticity of Ferropericlase across the Spin Crossover in the Earth's Lower Mantle.
    Yang J; Tong X; Lin JF; Okuchi T; Tomioka N
    Sci Rep; 2015 Dec; 5():17188. PubMed ID: 26621579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Valence and spin states of iron are invisible in Earth's lower mantle.
    Liu J; Dorfman SM; Zhu F; Li J; Wang Y; Zhang D; Xiao Y; Bi W; Alp EE
    Nat Commun; 2018 Mar; 9(1):1284. PubMed ID: 29599446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump.
    Fei H; Ballmer MD; Faul U; Walte N; Cao W; Katsura T
    Nature; 2023 Aug; 620(7975):794-799. PubMed ID: 37407826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle.
    Frost DJ; Liebske C; Langenhorst F; McCammon CA; Trønnes RG; Rubie DC
    Nature; 2004 Mar; 428(6981):409-12. PubMed ID: 15042086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and dynamics of Earth's lower mantle.
    Garnero EJ; McNamara AK
    Science; 2008 May; 320(5876):626-8. PubMed ID: 18451293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments.
    Nabiei F; Badro J; Boukaré CÉ; Hébert C; Cantoni M; Borensztajn S; Wehr N; Gillet P
    Geophys Res Lett; 2021 Jun; 48(12):e2021GL092446. PubMed ID: 34219835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D" layer.
    Oganov AR; Ono S
    Nature; 2004 Jul; 430(6998):445-8. PubMed ID: 15269766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. First-principles constraints on diffusion in lower-mantle minerals and a weak D'' layer.
    Ammann MW; Brodholt JP; Wookey J; Dobson DP
    Nature; 2010 May; 465(7297):462-5. PubMed ID: 20505725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.