BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 36261601)

  • 1. 3D multi-physics uncertainty quantification using physics-based machine learning.
    Degen D; Cacace M; Wellmann F
    Sci Rep; 2022 Oct; 12(1):17491. PubMed ID: 36261601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty-based saltwater intrusion prediction using integrated Bayesian machine learning modeling (IBMLM) in a deep aquifer.
    Yin J; Huang Y; Lu C; Liu Z
    J Environ Manage; 2024 Mar; 354():120252. PubMed ID: 38394869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model order reduction techniques to identify submarining risk in a simplified human body model.
    Go L; Jehle JS; Rees M; Czech C; Peldschus S; Duddeck F
    Comput Methods Biomech Biomed Engin; 2024; 27(1):24-35. PubMed ID: 36625712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty quantification in multivariable regression for material property prediction with Bayesian neural networks.
    Li L; Chang J; Vakanski A; Wang Y; Yao T; Xian M
    Sci Rep; 2024 May; 14(1):10543. PubMed ID: 38719870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recipes for when physics fails: recovering robust learning of physics informed neural networks.
    Bajaj C; McLennan L; Andeen T; Roy A
    Mach Learn Sci Technol; 2023 Mar; 4(1):015013. PubMed ID: 37680302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid physics-machine learning models for predicting rate of penetration in the Halahatang oil field, Tarim Basin.
    Jiao S; Li W; Li Z; Gai J; Zou L; Su Y
    Sci Rep; 2024 Mar; 14(1):5957. PubMed ID: 38472418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural optimization machine: a neural network approach for optimization and its application in additive manufacturing with physics-guided learning.
    Chen J; Liu Y
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220405. PubMed ID: 37742708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling meets machine learning: What can we learn?
    Peng GCY; Alber M; Tepole AB; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    Arch Comput Methods Eng; 2021 May; 28(3):1017-1037. PubMed ID: 34093005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-informed machine learning and its structural integrity applications: state of the art.
    Zhu SP; Wang L; Luo C; Correia JAFO; De Jesus AMP; Berto F; Wang QY
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220406. PubMed ID: 37742705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.
    Gnanasambandam R; Shen B; Chung J; Yue X; Kong Z
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15588-15603. PubMed ID: 37610913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Machine Learning in Chemical Compound Space.
    Huang B; von Lilienfeld OA
    Chem Rev; 2021 Aug; 121(16):10001-10036. PubMed ID: 34387476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preface to the theme issue 'physics-informed machine learning and its structural integrity applications'.
    Zhu SP; De Jesus AMP; Berto F; Michopoulos JG; Iacoviello F; Wang Q
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20230176. PubMed ID: 37742706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-informed neural networks as surrogate models of hydrodynamic simulators.
    Donnelly J; Daneshkhah A; Abolfathi S
    Sci Total Environ; 2024 Feb; 912():168814. PubMed ID: 38016570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak-formulated physics-informed modeling and optimization for heterogeneous digital materials.
    Zhang Z; Lee JH; Sun L; Gu GX
    PNAS Nexus; 2024 May; 3(5):pgae186. PubMed ID: 38818237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Approaches for 3D Motion Synthesis and Musculoskeletal Dynamics Estimation: A Survey.
    Loi I; Zacharaki EI; Moustakas K
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5810-5829. PubMed ID: 37624722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning-Accelerated Simulations for the Design of Airbag Constrained by Obstacles at Rest.
    Valenzuela Del Río JE; Lancashire R; Chatrath K; Ritmeijer P; Arvanitis E; Mirabella L
    Stapp Car Crash J; 2024 Mar; 67():1-13. PubMed ID: 38513070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning to find exact analytic solutions to analytically posed physics problems.
    Ashhab S
    Heliyon; 2024 Mar; 10(6):e28124. PubMed ID: 38545200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy of semiempirical models and machine learning in computational chemistry.
    Fedik N; Nebgen B; Lubbers N; Barros K; Kulichenko M; Li YW; Zubatyuk R; Messerly R; Isayev O; Tretiak S
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for Li-ion battery prognosis based on hybrid Bayesian physics-informed neural networks.
    Nascimento RG; Viana FAC; Corbetta M; Kulkarni CS
    Sci Rep; 2023 Aug; 13(1):13856. PubMed ID: 37620364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures.
    Ge Y; He Z; Li S; Zhang L; Shi L
    Comput Mech; 2023 Mar; ():1-20. PubMed ID: 37359778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.