These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 36261666)

  • 1. Solid Electrolyte Interface in Zn-Based Battery Systems.
    Wang X; Li X; Fan H; Ma L
    Nanomicro Lett; 2022 Oct; 14(1):205. PubMed ID: 36261666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Research Progress into Zinc Ion Battery Solid-Electrolyte Interfaces.
    Li L; Jia S; Cheng Z; Zhang C
    ChemSusChem; 2023 Oct; 16(20):e202300632. PubMed ID: 37312016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorinated interphase enables reversible aqueous zinc battery chemistries.
    Cao L; Li D; Pollard T; Deng T; Zhang B; Yang C; Chen L; Vatamanu J; Hu E; Hourwitz MJ; Ma L; Ding M; Li Q; Hou S; Gaskell K; Fourkas JT; Yang XQ; Xu K; Borodin O; Wang C
    Nat Nanotechnol; 2021 Aug; 16(8):902-910. PubMed ID: 33972758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery.
    Clarisza A; Bezabh HK; Jiang SK; Huang CJ; Olbasa BW; Wu SH; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36644-36655. PubMed ID: 35927979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems.
    Ahmed M; Yazdi AZ; Mitha A; Chen P
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30348-30356. PubMed ID: 30091585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolyte Design for In Situ Construction of Highly Zn
    Zeng X; Mao J; Hao J; Liu J; Liu S; Wang Z; Wang Y; Zhang S; Zheng T; Liu J; Rao P; Guo Z
    Adv Mater; 2021 Mar; 33(11):e2007416. PubMed ID: 33576130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressed Dissolution of Fluorine-Rich SEI Enables Highly Reversible Zinc Metal Anode for Stable Aqueous Zinc-Ion Batteries.
    Zhang Y; Shen S; Xi K; Li P; Kang Z; Zhao J; Yin D; Su Y; Zhao H; He G; Ding S
    Angew Chem Int Ed Engl; 2024 May; ():e202407067. PubMed ID: 38771481
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Cora S; Ahmad S; Sa N
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10131-10140. PubMed ID: 33596040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing Solid Electrolyte Interphase for Aqueous Zinc Batteries.
    Li Y; Yu Z; Huang J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202309957. PubMed ID: 37596841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Aqueous Zinc-ion Batteries at High Zinc Utilization.
    Han Y; Yan Z; Zhang L; Zhu Z
    ChemSusChem; 2024 Jul; ():e202401166. PubMed ID: 39030787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid Electrolyte Interphase Architecture for a Stable Li-electrolyte Interface.
    Pan Y; Zhang Y
    Chem Asian J; 2023 Oct; 18(19):e202300453. PubMed ID: 37563980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synergistic Strategy of Organic Molecules Introduced a High Zn
    Wang N; Zhang Y; Yuan J; Hu L; Sun M; Li Z; Yao X; Weng X; Jia C
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48081-48090. PubMed ID: 36222419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions.
    Chen R; Zhang W; Guan C; Zhou Y; Gilmore I; Tang H; Zhang Z; Dong H; Dai Y; Du Z; Gao X; Zong W; Xu Y; Jiang P; Liu J; Zhao F; Li J; Wang X; He G
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202401987. PubMed ID: 38526053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect.
    Liu M; Yang L; Liu H; Amine A; Zhao Q; Song Y; Yang J; Wang K; Pan F
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32046-32051. PubMed ID: 31407885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode.
    Liu S; Vongsvivut JP; Wang Y; Zhang R; Yang F; Zhang S; Davey K; Mao J; Guo Z
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215600. PubMed ID: 36446737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Superior Aqueous Zinc-Ion Batteries: The Insights of Artificial Protective Interfaces.
    Farooq A; Zhao R; Han X; Yang J; Hu Z; Wu C; Bai Y
    ChemSusChem; 2024 May; ():e202301942. PubMed ID: 38735842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass-producible in-situ amorphous solid/electrolyte interface with high ionic conductivity for long-cycling aqueous Zn-ion batteries.
    Ren J; Li C; Zhang S; Luo B; Tian M; Liu S; Wang L
    J Colloid Interface Sci; 2023 Jul; 641():229-238. PubMed ID: 36933469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Interphasial Chemistry for Highly Reversible Aqueous Zn Ion Batteries.
    Zhao X; Dong N; Yan M; Pan H
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4053-4060. PubMed ID: 36647681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Inferior Zn Anode in High-Concentration Electrolyte: Leveraging Solid-Electrolyte-Interface for Stabilized Cycling of Aqueous Zn-Metal Batteries.
    Guo Y; Li Z; Min Y; Wang X
    ChemSusChem; 2023 Aug; 16(15):e202300311. PubMed ID: 37022106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.