BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36261692)

  • 1. Transcriptional Control of Peripheral Nerve Regeneration.
    Zhang Y; Zhao Q; Chen Q; Xu L; Yi S
    Mol Neurobiol; 2023 Jan; 60(1):329-341. PubMed ID: 36261692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.
    Hung HA; Sun G; Keles S; Svaren J
    J Biol Chem; 2015 Mar; 290(11):6937-50. PubMed ID: 25614629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway.
    Xu X; Song L; Li Y; Guo J; Huang S; Du S; Li W; Cao R; Cui S
    J Transl Med; 2023 Oct; 21(1):733. PubMed ID: 37848983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury.
    Nocera G; Jacob C
    Cell Mol Life Sci; 2020 Oct; 77(20):3977-3989. PubMed ID: 32277262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury.
    Glenn TD; Talbot WS
    Curr Opin Neurobiol; 2013 Dec; 23(6):1041-8. PubMed ID: 23896313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration.
    Chen Q; Zhang L; Zhang F; Yi S
    J Biol Chem; 2023 Dec; 299(12):105444. PubMed ID: 37949219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair.
    Mogha A; Harty BL; Carlin D; Joseph J; Sanchez NE; Suter U; Piao X; Cavalli V; Monk KR
    J Neurosci; 2016 Dec; 36(49):12351-12367. PubMed ID: 27927955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hallmarks of peripheral nerve injury and regeneration.
    Krishnan A; Verge VMK; Zochodne DW
    Handb Clin Neurol; 2024; 201():1-17. PubMed ID: 38697733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Heterogeneity and Variability in Peripheral Nerve after Injury.
    Ren Z; Tan Y; Zhao L
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target?
    McMorrow LA; Kosalko A; Robinson D; Saiani A; Reid AJ
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration.
    Sundaram VK; Schütza V; Schröter NH; Backhaus A; Bilsing A; Joneck L; Seelbach A; Mutschler C; Gomez-Sanchez JA; Schäffner E; Sánchez EE; Akkermann D; Paul C; Schwagarus N; Müller S; Odle A; Childs G; Ewers D; Kungl T; Sitte M; Salinas G; Sereda MW; Nave KA; Schwab MH; Ost M; Arthur-Farraj P; Stassart RM; Fledrich R
    Cell Metab; 2023 Dec; 35(12):2136-2152.e9. PubMed ID: 37989315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases.
    Arthur-Farraj P; Coleman MP
    Neurotherapeutics; 2021 Oct; 18(4):2200-2221. PubMed ID: 34595734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Senescent Schwann cells induced by aging and chronic denervation impair axonal regeneration following peripheral nerve injury.
    Fuentes-Flores A; Geronimo-Olvera C; Girardi K; Necuñir-Ibarra D; Patel SK; Bons J; Wright MC; Geschwind D; Hoke A; Gomez-Sanchez JA; Schilling B; Rebolledo DL; Campisi J; Court FA
    EMBO Mol Med; 2023 Dec; 15(12):e17907. PubMed ID: 37860842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA Mediated Regulation of Schwann Cell Migration and Proliferation in Peripheral Nerve Injury.
    Sohn EJ; Park HT
    Biomed Res Int; 2018; 2018():8198365. PubMed ID: 29854793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic compensatory mechanism regulated by
    Velasco-Aviles S; Patel N; Casillas-Bajo A; Frutos-Rincón L; Velasco E; Gallar J; Arthur-Farraj P; Gomez-Sanchez JA; Cabedo H
    Elife; 2022 Jan; 11():. PubMed ID: 35076395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury.
    Wu G; Wen X; Kuang R; Lui KW; He B; Li G; Zhu Z
    Cell Mol Neurobiol; 2023 Dec; 44(1):11. PubMed ID: 38150045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration.
    Jiang M; Chen M; Liu N
    Front Neurol; 2024; 15():1372168. PubMed ID: 38651098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of kinases in peripheral nerve regeneration: mechanisms and implications.
    Zhang X; Duan X; Liu X
    Front Neurol; 2024; 15():1340845. PubMed ID: 38689881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies.
    Stassart RM; Gomez-Sanchez JA; Lloyd AC
    Cold Spring Harb Perspect Biol; 2024 Jan; ():. PubMed ID: 38199866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination.
    Hu R; Dun X; Singh L; Banton MC
    Neural Regen Res; 2024 Jul; 19(7):1575-1583. PubMed ID: 38051902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.