BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36261692)

  • 21. Myelinating Schwann Cell Polarity and Mechanically-Driven Myelin Sheath Elongation.
    Tricaud N
    Front Cell Neurosci; 2017; 11():414. PubMed ID: 29354031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration.
    Jiang M; Chen M; Liu N
    Front Neurol; 2024; 15():1372168. PubMed ID: 38651098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of kinases in peripheral nerve regeneration: mechanisms and implications.
    Zhang X; Duan X; Liu X
    Front Neurol; 2024; 15():1340845. PubMed ID: 38689881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering.
    Li C; Song Y; Meng X
    Tissue Eng Part B Rev; 2024 Jun; ():. PubMed ID: 38832865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination.
    Hu R; Dun X; Singh L; Banton MC
    Neural Regen Res; 2024 Jul; 19(7):1575-1583. PubMed ID: 38051902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrigendum: Transcription factor SS18L1 regulates the proliferation, migration and differentiation of Schwann cells in peripheral nerve injury.
    Qian T; Qiao P; Lu Y; Wang H
    Front Vet Sci; 2023; 10():1324763. PubMed ID: 38026628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases.
    Amanollahi M; Jameie M; Heidari A; Rezaei N
    Mol Neurobiol; 2023 Feb; 60(2):923-959. PubMed ID: 36383328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TREM2 and Microglia Contribute to the Synaptic Plasticity: from Physiology to Pathology.
    Yu CJ; Wang M; Li RY; Wei T; Yang HC; Yin YS; Mi YX; Qin Q; Tang Y
    Mol Neurobiol; 2023 Feb; 60(2):512-523. PubMed ID: 36318443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9 Mediated Therapeutic Approach in Huntington's Disease.
    Alkanli SS; Alkanli N; Ay A; Albeniz I
    Mol Neurobiol; 2023 Mar; 60(3):1486-1498. PubMed ID: 36482283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration.
    Sun Y; Zhang H; Zhang Y; Liu Z; He D; Xu W; Li S; Zhang C; Zhang Z
    Bioact Mater; 2023 Oct; 28():227-242. PubMed ID: 37292230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders.
    Wu C; Zou P; Feng S; Zhu L; Li F; Liu TC; Duan R; Yang L
    Mol Neurobiol; 2023 Apr; 60(4):1749-1765. PubMed ID: 36567361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Moving CNS axon growth and regeneration research into human model systems.
    Lear BP; Moore DL
    Front Neurosci; 2023; 17():1198041. PubMed ID: 37425013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: Myelin clearance is critical for regeneration after peripheral nerve injury.
    Yuan Y; Wang Y; Wu S; Zhao MY
    Front Neurol; 2022; 13():908148. PubMed ID: 36588879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Down-regulation miR-146a-5p in Schwann cell-derived exosomes induced macrophage M1 polarization by impairing the inhibition on TRAF6/NF-κB pathway after peripheral nerve injury.
    Sun J; Liao Z; Li Z; Li H; Wu Z; Chen C; Wang H
    Exp Neurol; 2023 Apr; 362():114295. PubMed ID: 36493861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Next-generation RNA sequencing elucidates transcriptomic signatures of pathophysiologic nerve regeneration.
    Warner WS; Stubben C; Yeoh S; Light AR; Mahan MA
    Sci Rep; 2023 May; 13(1):8856. PubMed ID: 37258605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges.
    Chen J; Huang L; Yang Y; Xu W; Qin Q; Qin R; Liang X; Lai X; Huang X; Xie M; Chen L
    Brain Sci; 2023 Mar; 13(3):. PubMed ID: 36979334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive autophagy reprogramming in Schwann cells during peripheral demyelination.
    Jo YR; Oh Y; Kim YH; Shin YK; Kim HR; Go H; Shin J; Park HJ; Koh H; Kim JK; Shin JE; Lee KE; Park HT
    Cell Mol Life Sci; 2023 Jan; 80(1):34. PubMed ID: 36622429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets.
    Akram R; Anwar H; Javed MS; Rasul A; Imran A; Malik SA; Raza C; Khan IU; Sajid F; Iman T; Sun T; Han HS; Hussain G
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DAP12 deletion causes age-related motor function impairment but promotes functional recovery after sciatic nerve crush injury.
    Liu C; Shan F; Gao F; Ji Q; Chen Y; Wang C; Wang Z; Gao P; Lv Z; Wang Y
    Exp Neurol; 2023 Feb; 360():114296. PubMed ID: 36503041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and In Vitro Differentiation of Schwann Cells.
    Hörner SJ; Couturier N; Gueiber DC; Hafner M; Rudolf R
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.