These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36261960)
1. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. Zhu X; Guo H; Huang JJ; Tian S; Xu W; Mai Y J Environ Manage; 2022 Dec; 323():116187. PubMed ID: 36261960 [TBL] [Abstract][Full Text] [Related]
2. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
3. Remote sensing and machine learning based framework for the assessment of spatio-temporal water quality in the Middle Ganga Basin. Krishnaraj A; Honnasiddaiah R Environ Sci Pollut Res Int; 2022 Sep; 29(43):64939-64958. PubMed ID: 35476269 [TBL] [Abstract][Full Text] [Related]
4. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Fang C; Song C; Wen Z; Liu G; Wang X; Li S; Shang Y; Tao H; Lyu L; Song K Environ Res; 2024 Jan; 240(Pt 1):117430. PubMed ID: 37866530 [TBL] [Abstract][Full Text] [Related]
5. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Gao Y; Gao J; Yin H; Liu C; Xia T; Wang J; Huang Q J Environ Manage; 2015 Mar; 151():33-43. PubMed ID: 25528271 [TBL] [Abstract][Full Text] [Related]
6. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
7. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Cheng C; Wei Y; Lv G; Xu N Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368 [TBL] [Abstract][Full Text] [Related]
8. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Chen J; Quan W Environ Monit Assess; 2013 Mar; 185(3):2243-55. PubMed ID: 22707149 [TBL] [Abstract][Full Text] [Related]
9. Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River. Zhang Y; Kong X; Deng L; Liu Y J Environ Manage; 2023 Sep; 342():118283. PubMed ID: 37290307 [TBL] [Abstract][Full Text] [Related]
10. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Harkort L; Duan Z Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China. Yang J; Zheng Y; Zhang W; Zhou Y; Zhang Y J Environ Manage; 2024 Jul; 364():121386. PubMed ID: 38865920 [TBL] [Abstract][Full Text] [Related]
12. Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms. Tian S; Guo H; Xu W; Zhu X; Wang B; Zeng Q; Mai Y; Huang JJ Environ Sci Pollut Res Int; 2023 Feb; 30(7):18617-18630. PubMed ID: 36217046 [TBL] [Abstract][Full Text] [Related]
13. Estimation of underwater visibility in coastal and inland waters using remote sensing data. Kulshreshtha A; Shanmugam P Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489 [TBL] [Abstract][Full Text] [Related]
14. Multi-sensor and multi-platform retrieval of water chlorophyll a concentration in karst wetlands using transfer learning frameworks with ASD, UAV, and Planet CubeSate reflectance data. Fu B; Li S; Lao Z; Yuan B; Liang Y; He W; Sun W; He H Sci Total Environ; 2023 Nov; 901():165963. PubMed ID: 37543316 [TBL] [Abstract][Full Text] [Related]
15. Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. Meng H; Zhang J; Zheng Z Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805386 [TBL] [Abstract][Full Text] [Related]
16. Novel methods for monitoring low chlorophyll-a concentrations in the large, oligotrophic Lake Malawi/Nyasa/Niassa. Makwinja R; Inagaki Y; Tesfamichael SG; Curtis CJ J Environ Manage; 2024 Jul; 364():121462. PubMed ID: 38878578 [TBL] [Abstract][Full Text] [Related]
17. [Remote chlorophyll a retrieval in Taihu Lake by three-band model using hyperion hyperspectral data]. Du C; Wang SX; Zhou Y; Yan FL Huan Jing Ke Xue; 2009 Oct; 30(10):2904-10. PubMed ID: 19968105 [TBL] [Abstract][Full Text] [Related]
18. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Kim YH; Son S; Kim HC; Kim B; Park YG; Nam J; Ryu J Environ Int; 2020 Jan; 134():105301. PubMed ID: 31743805 [TBL] [Abstract][Full Text] [Related]
19. Remote sensing estimation of colored dissolved organic matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea. Ling Z; Sun D; Wang S; Qiu Z; Huan Y; Mao Z; He Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):6872-6885. PubMed ID: 31875926 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images. Cui Y; Yan Z; Wang J; Hao S; Liu Y Environ Sci Pollut Res Int; 2022 Jan; 29(3):4401-4413. PubMed ID: 34409532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]