BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36261963)

  • 1. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture.
    Medina-Díaz HL; Acosta I; Muñoz M; López Bellido FJ; Villaseñor J; Llanos J; Rodríguez L; Fernández-Morales FJ
    J Environ Manage; 2022 Dec; 323():116251. PubMed ID: 36261963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans.
    Zhan Y; Shen X; Chen M; Yang K; Xie H
    Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics.
    Acosta Hernández I; Muñoz Morales M; Fernández Morales FJ; Rodríguez Romero L; Villaseñor Camacho J
    Environ Res; 2023 Dec; 238(Pt 2):117183. PubMed ID: 37769830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.
    Vardanyan N; Sevoyan G; Navasardyan T; Vardanyan A
    Environ Technol; 2019 Nov; 40(26):3467-3472. PubMed ID: 29781399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial immobilisation and adaptation to Cu
    Maluleke MD; Kotsiopoulos A; Govender-Opitz E; Harrison STL
    Res Microbiol; 2024; 175(1-2):104148. PubMed ID: 37813270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide.
    Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY
    Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource.
    Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metals recovery from polymetallic sulfide tailings by bioleaching functional bacteria isolated with the improved 9K agar: Comparison between one-step and two-step processes.
    Hu M; Zhao X; Gu J; Qian L; Wang Z; Nie Y; Han X; An L; Jiang H
    Environ Res; 2024 Jan; 240(Pt 1):117511. PubMed ID: 37890822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans].
    Drogui P; Picher S; Mercier G; Blais JF
    Environ Technol; 2003 Nov; 24(11):1413-23. PubMed ID: 14733394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.
    Vera M; Schippers A; Hedrich S; Sand W
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6933-6952. PubMed ID: 36194263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms.
    Jones S; Santini JM
    Essays Biochem; 2023 Aug; 67(4):685-699. PubMed ID: 37449416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate.
    Xie Z; Mahmood Q; Zhang S
    Environ Sci Pollut Res Int; 2024 May; 31(23):34282-34294. PubMed ID: 38698096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by
    Huynh D; Norambuena J; Boldt C; Kaschabek SR; Levicán G; Schlömann M
    Front Microbiol; 2020; 11():2102. PubMed ID: 33013767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of polymetallic sulphidic mining residues: influence of increasing solid concentration on microbial community dynamics and metal dissolution.
    Joulian C; Hubau A; Pino-Herrera D; Guezennec AG
    Res Microbiol; 2024; 175(1-2):104112. PubMed ID: 37549769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.