These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36261963)

  • 1. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture.
    Medina-Díaz HL; Acosta I; Muñoz M; López Bellido FJ; Villaseñor J; Llanos J; Rodríguez L; Fernández-Morales FJ
    J Environ Manage; 2022 Dec; 323():116251. PubMed ID: 36261963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans.
    Zhan Y; Shen X; Chen M; Yang K; Xie H
    Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics.
    Acosta Hernández I; Muñoz Morales M; Fernández Morales FJ; Rodríguez Romero L; Villaseñor Camacho J
    Environ Res; 2023 Dec; 238(Pt 2):117183. PubMed ID: 37769830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.
    Vardanyan N; Sevoyan G; Navasardyan T; Vardanyan A
    Environ Technol; 2019 Nov; 40(26):3467-3472. PubMed ID: 29781399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial immobilisation and adaptation to Cu
    Maluleke MD; Kotsiopoulos A; Govender-Opitz E; Harrison STL
    Res Microbiol; 2024; 175(1-2):104148. PubMed ID: 37813270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide.
    Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY
    Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource.
    Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metals recovery from polymetallic sulfide tailings by bioleaching functional bacteria isolated with the improved 9K agar: Comparison between one-step and two-step processes.
    Hu M; Zhao X; Gu J; Qian L; Wang Z; Nie Y; Han X; An L; Jiang H
    Environ Res; 2024 Jan; 240(Pt 1):117511. PubMed ID: 37890822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans].
    Drogui P; Picher S; Mercier G; Blais JF
    Environ Technol; 2003 Nov; 24(11):1413-23. PubMed ID: 14733394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.
    Vera M; Schippers A; Hedrich S; Sand W
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6933-6952. PubMed ID: 36194263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms.
    Jones S; Santini JM
    Essays Biochem; 2023 Aug; 67(4):685-699. PubMed ID: 37449416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate.
    Xie Z; Mahmood Q; Zhang S
    Environ Sci Pollut Res Int; 2024 May; 31(23):34282-34294. PubMed ID: 38698096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by
    Huynh D; Norambuena J; Boldt C; Kaschabek SR; Levicán G; Schlömann M
    Front Microbiol; 2020; 11():2102. PubMed ID: 33013767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of polymetallic sulphidic mining residues: influence of increasing solid concentration on microbial community dynamics and metal dissolution.
    Joulian C; Hubau A; Pino-Herrera D; Guezennec AG
    Res Microbiol; 2024; 175(1-2):104112. PubMed ID: 37549769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.