These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36261963)

  • 21. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioleaching of Indonesian Galena Concentrate With an Iron- and Sulfur-Oxidizing Mixotrophic Bacterium at Room Temperature.
    Chaerun SK; Putri EA; Mubarok MZ
    Front Microbiol; 2020; 11():557548. PubMed ID: 33133032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acid mine drainage at the Bahia Gold Belt (Brazil): microbial isolation and characterization.
    Bernardez LA; de Oliveira LEL; de Andrade Lima LRP
    Environ Monit Assess; 2021 Jan; 193(2):60. PubMed ID: 33442789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm Formation Is Crucial for Efficient Copper Bioleaching From Bornite Under Mesophilic Conditions: Unveiling the Lifestyle and Catalytic Role of Sulfur-Oxidizing Bacteria.
    Bobadilla-Fazzini RA; Poblete-Castro I
    Front Microbiol; 2021; 12():761997. PubMed ID: 34745072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi.
    Konishi Y; Yoshida S; Asai S
    Biotechnol Bioeng; 1995 Dec; 48(6):592-600. PubMed ID: 18623527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Periodic bioleaching of refractory gold-bearing pyrite ore].
    Vardanian NS; Nagdalian SZ
    Prikl Biokhim Mikrobiol; 2009; 45(4):446-51. PubMed ID: 19764614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic effect of biogenic Fe
    Panda S; Akcil A; Mishra S; Erust C
    J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching.
    Sajjad W; Zheng G; Ma X; Xu W; Ali B; Rafiq M; Zada S; Irfan M; Zeman J
    Sci Total Environ; 2020 Mar; 709():136136. PubMed ID: 31884267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress in bioleaching: part B, applications of microbial processes by the minerals industries.
    Roberto FF; Schippers A
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):5913-5928. PubMed ID: 36038754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching.
    Jones GC; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2735-42. PubMed ID: 22584431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment.
    Fomchenko NV; Muravyov MI
    J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.
    Wang J; Huang Q; Li T; Xin B; Chen S; Guo X; Liu C; Li Y
    J Environ Manage; 2015 Aug; 159():11-17. PubMed ID: 25996622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement.
    Elghali A; Benzaazoua M; Bouzahzah H; Abdelmoula M; Dynes JJ; Jamieson HE
    Sci Total Environ; 2021 Aug; 784():147105. PubMed ID: 33905938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst.
    Nagar N; Garg H; Sharma N; Awe SA; Gahan CS
    3 Biotech; 2021 Mar; 11(3):143. PubMed ID: 33708466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore.
    Zhou S; Liao X; Li S; Fang X; Guan Z; Ye M; Sun S
    J Environ Manage; 2022 Feb; 303():114192. PubMed ID: 34861501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.
    Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z
    J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.