These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36262121)

  • 1. Two novel outlier detection approaches based on unsupervised possibilistic and fuzzy clustering.
    Cebeci Z; Cebeci C; Tahtali Y; Bayyurt L
    PeerJ Comput Sci; 2022; 8():e1060. PubMed ID: 36262121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised approach data analysis based on fuzzy possibilistic clustering: application to medical image MRI.
    El Harchaoui NE; Ait Kerroum M; Hammouch A; Ouadou M; Aboutajdine D
    Comput Intell Neurosci; 2013; 2013():435497. PubMed ID: 24489535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm.
    Chowdhary CL; Mittal M; P K; Pattanaik PA; Marszalek Z
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The Identification of Lettuce Varieties by Using Unsupervised Possibilistic Fuzzy Learning Vector Quantization and Near Infrared Spectroscopy].
    Wu XH; Cai PQ; Wu B; Sun J; Ji G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):711-5. PubMed ID: 27400511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Unsupervised Data-Driven Anomaly Detection Approach for Adverse Health Conditions in People Living With Dementia: Cohort Study.
    Bijlani N; Nilforooshan R; Kouchaki S
    JMIR Aging; 2022 Sep; 5(3):e38211. PubMed ID: 36121687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy-based grid approach for handling outliers: a case study to environmental monitoring data.
    Shah A; Ali B; Wahab F; Ullah I; Amesho KTT; Shafiq M
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125138-125157. PubMed ID: 37306879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition.
    Dan Y; Tao J; Zhou D
    Front Neurosci; 2022; 16():855421. PubMed ID: 35600616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outlier Detection Based on Fuzzy Rough Granules in Mixed Attribute Data.
    Yuan Z; Chen H; Li T; Sang B; Wang S
    IEEE Trans Cybern; 2022 Aug; 52(8):8399-8412. PubMed ID: 33750721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possibilistic analogue to Bayes estimation with fuzzy data and its application in machine learning.
    Arefi M; Viertl R; Taheri SM
    Soft comput; 2022; 26(12):5497-5510. PubMed ID: 35465466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outlier Detection Based on Residual Histogram Preference for Geometric Multi-Model Fitting.
    Zhao X; Zhang Y; Xie S; Qin Q; Wu S; Luo B
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penalized unsupervised learning with outliers.
    Witten DM
    Stat Interface; 2013; 6(2):211-221. PubMed ID: 23875057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism.
    Woldaregay AZ; Launonen IK; Albers D; Igual J; Ă…rsand E; Hartvigsen G
    J Med Internet Res; 2020 Aug; 22(8):e18912. PubMed ID: 32784179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Outlier Detection Using Memory and Contrastive Learning.
    Huyan N; Quan D; Zhang X; Liang X; Chanussot J; Jiao L
    IEEE Trans Image Process; 2022; 31():6440-6454. PubMed ID: 36215361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.
    Singh A; Quek C; Cho SY
    IEEE Trans Neural Netw; 2008 Apr; 19(4):625-44. PubMed ID: 18390309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outlier detection in spatial error models using modified thresholding-based iterative procedure for outlier detection approach.
    Cai J; Hu W; Yang Y; Yan H; Chen F
    BMC Med Res Methodol; 2024 Apr; 24(1):89. PubMed ID: 38622516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel subspace outlier detection method by entropy-based clustering algorithm.
    Zuo Z; Li Z; Cheng P; Zhao J
    Sci Rep; 2023 Sep; 13(1):15331. PubMed ID: 37714878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploratory Outlier Detection for Acceleromyographic Neuromuscular Monitoring: Machine Learning Approach.
    Verdonck M; Carvalho H; Berghmans J; Forget P; Poelaert J
    J Med Internet Res; 2021 May; 23(6):e25913. PubMed ID: 34152273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting EEG outliers for BCI on the Riemannian manifold using spectral clustering.
    Yamamoto MS; Sadatnejad K; Tanaka T; Islam R; Tanaka Y; Lotte F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():438-441. PubMed ID: 33018022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised Sequential Outlier Detection With Deep Architectures.
    Lu W; Cheng Y; Xiao C; Chang S; Huang S; Liang B; Huang T
    IEEE Trans Image Process; 2017 Sep; 26(9):4321-4330. PubMed ID: 28600248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust principal component analysis for accurate outlier sample detection in RNA-Seq data.
    Chen X; Zhang B; Wang T; Bonni A; Zhao G
    BMC Bioinformatics; 2020 Jun; 21(1):269. PubMed ID: 32600248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.