These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36262319)

  • 1. Laplace approximation for conditional autoregressive models for spatial data of diseases.
    Wang G
    MethodsX; 2022; 9():101872. PubMed ID: 36262319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages.
    Monnahan CC; Kristensen K
    PLoS One; 2018; 13(5):e0197954. PubMed ID: 29795657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping.
    Huang J; Malone BP; Minasny B; McBratney AB; Triantafilis J
    Sci Total Environ; 2017 Dec; 609():621-632. PubMed ID: 28763659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Mar; 4():33-49. PubMed ID: 23481252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era.
    Teng J; Ding S; Shi X; Zhang H; Hu X
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():39-55. PubMed ID: 24377114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique.
    Moraga P; Dean C; Inoue J; Morawiecki P; Noureen SR; Wang F
    Spat Spatiotemporal Epidemiol; 2021 Nov; 39():100440. PubMed ID: 34774255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of computational algorithms for the Bayesian analysis of clinical trials.
    Chen Z; Berger JS; Castellucci LA; Farkouh M; Goligher EC; Hade EM; Hunt BJ; Kornblith LZ; Lawler PR; Leifer ES; Lorenzi E; Neal MD; Zarychanski R; Heath A
    Clin Trials; 2024 Dec; 21(6):689-700. PubMed ID: 38752434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.
    Mathew B; Holand AM; Koistinen P; Léon J; Sillanpää MJ
    Theor Appl Genet; 2016 Feb; 129(2):215-25. PubMed ID: 26582509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.
    Carroll R; Lawson AB; Faes C; Kirby RS; Aregay M; Watjou K
    Spat Spatiotemporal Epidemiol; 2015; 14-15():45-54. PubMed ID: 26530822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation.
    Seppä K; Rue H; Hakulinen T; Läärä E; Sillanpää MJ; Pitkäniemi J
    Stat Med; 2019 Feb; 38(5):778-791. PubMed ID: 30334278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations.
    Paul M; Riebler A; Bachmann LM; Rue H; Held L
    Stat Med; 2010 May; 29(12):1325-39. PubMed ID: 20101670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.
    Ugarte MD; Adin A; Goicoa T; Militino AF
    Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A design-by-treatment interaction model for network meta-analysis and meta-regression with integrated nested Laplace approximations.
    Günhan BK; Friede T; Held L
    Res Synth Methods; 2018 Jun; 9(2):179-194. PubMed ID: 29193801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation.
    Muff S; Signer J; Fieberg J
    J Anim Ecol; 2020 Jan; 89(1):80-92. PubMed ID: 31454066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models.
    Alegana VA; Atkinson PM; Wright JA; Kamwi R; Uusiku P; Katokele S; Snow RW; Noor AM
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():25-36. PubMed ID: 24238079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial correlation in Bayesian logistic regression with misclassification.
    Bihrmann K; Toft N; Nielsen SS; Ersbøll AK
    Spat Spatiotemporal Epidemiol; 2014 Jun; 9():1-12. PubMed ID: 24889989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laplacian-P-splines for Bayesian inference in the mixture cure model.
    Gressani O; Faes C; Hens N
    Stat Med; 2022 Jun; 41(14):2602-2626. PubMed ID: 35699121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive MCMC for Bayesian Variable Selection in Generalised Linear Models and Survival Models.
    Liang X; Livingstone S; Griffin J
    Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian nonparametric regression and density estimation using integrated nested Laplace approximations.
    Wang XF
    J Biom Biostat; 2013 Jun; 4():. PubMed ID: 24416633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.