These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36262598)

  • 1. Vibration Isolation and Noise Reduction Method Based on Phononic Crystal.
    Li H; Sun P
    Comput Intell Neurosci; 2022; 2022():9903645. PubMed ID: 36262598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sandwich Plate Structure Periodically Attached by S-Shaped Oscillators for Low Frequency Ship Vibration Isolation.
    Shen C; Huang J; Zhang Z; Xue J; Qian D
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band gap characteristics of new composite multiple locally resonant phononic crystal metamaterial.
    Xiao P; Miao L; Zheng H; Lei L
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Vibration-Damping Characteristics and Parameter Optimization of Cylindrical Cavity Double-Plate Phononic Crystal.
    Song C; Yang Q; Xiong X; Yin R; Jia B; Liang Y; Fang H
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Design of Two-Dimensional Phononic Crystals Based on Genetic Algorithm.
    Wen X; Kang L; Sun X; Song T; Qi L; Cao Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound trapping and waveguiding in locally resonant viscoelastic phononic crystals.
    Yip KLS; John S
    Sci Rep; 2023 Sep; 13(1):15313. PubMed ID: 37714916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pole distribution in finite phononic crystals: Understanding Bragg-effects through closed-form system dynamics.
    Al Ba'ba'a H; Nouh M; Singh T
    J Acoust Soc Am; 2017 Sep; 142(3):1399. PubMed ID: 28964106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals.
    Ponge MF; Croënne C; Vasseur JO; Bou Matar O; Hladky-Hennion AC; Dubus B
    J Acoust Soc Am; 2016 Jun; 139(6):3288. PubMed ID: 27369153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid phononic crystal for roof application.
    Wan Q; Shao R
    J Acoust Soc Am; 2017 Nov; 142(5):2988. PubMed ID: 29195453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.
    Zhou C; Sai Y; Chen J
    Ultrasonics; 2016 Sep; 71():69-74. PubMed ID: 27281285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.
    Zuo S; Huang H; Wu X; Zhang M; Ni T
    J Acoust Soc Am; 2018 Mar; 143(3):1326. PubMed ID: 29604708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure.
    Xiang H; Chai Z; Kou W; Zhong H; Xiang J
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Locally Resonant Characteristics of Pipelines with Periodic Structure.
    Lao X; Yu Y; Zhang F; Ye J; Xu X; Xia Z
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.
    Yang S; Liu Y
    Ultrasonics; 2018 Aug; 88():193-206. PubMed ID: 29679888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locally Resonant Phononic Crystals at Low frequencies Based on Porous SiC Multilayer.
    Mehaney A; Ahmed AM
    Sci Rep; 2019 Oct; 9(1):14767. PubMed ID: 31611574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.