These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36262647)
1. A dual-omics approach for profiling plant responses to biostimulant applications under controlled and field conditions. Baghdadi A; Della Lucia MC; Borella M; Bertoldo G; Ravi S; Zegada-Lizarazu W; Chiodi C; Pagani E; Hermans C; Stevanato P; Nardi S; Monti A; Mangione F Front Plant Sci; 2022; 13():983772. PubMed ID: 36262647 [TBL] [Abstract][Full Text] [Related]
2. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Goñi O; Quille P; O'Connell S Plant Physiol Biochem; 2018 May; 126():63-73. PubMed ID: 29501894 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptome Analysis of Two Ascophyllum nodosum Extract Biostimulants: Same Seaweed but Different. Goñi O; Fort A; Quille P; McKeown PC; Spillane C; O'Connell S J Agric Food Chem; 2016 Apr; 64(14):2980-9. PubMed ID: 27010818 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional and Physiological Analyses to Assess the Effects of a Novel Biostimulant in Tomato. Della Lucia MC; Baghdadi A; Mangione F; Borella M; Zegada-Lizarazu W; Ravi S; Deb S; Broccanello C; Concheri G; Monti A; Stevanato P; Nardi S Front Plant Sci; 2021; 12():781993. PubMed ID: 35087552 [TBL] [Abstract][Full Text] [Related]
6. A Biostimulant Preparation of Brown Seaweed Bajpai S; Shukla PS; Asiedu S; Pruski K; Prithiviraj B Plant Pathol J; 2019 Oct; 35(5):406-416. PubMed ID: 31632216 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome, Biochemical and Phenotypic Analysis of the Effects of a Precision Engineered Biostimulant for Inducing Salinity Stress Tolerance in Tomato. Ikuyinminu E; Goñi O; Łangowski Ł; O'Connell S Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108156 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic and physiological approaches to decipher cold stress mitigation exerted by brown-seaweed extract application in tomato. Borella M; Baghdadi A; Bertoldo G; Della Lucia MC; Chiodi C; Celletti S; Deb S; Baglieri A; Zegada-Lizarazu W; Pagani E; Monti A; Mangione F; Magro F; Hermans C; Stevanato P; Nardi S Front Plant Sci; 2023; 14():1232421. PubMed ID: 37767293 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a Biostimulant (Pepton) Based in Enzymatic Hydrolyzed Animal Protein in Comparison to Seaweed Extracts on Root Development, Vegetative Growth, Flowering, and Yield of Gold Cherry Tomatoes Grown under Low Stress Ambient Field Conditions. Polo J; Mata P Front Plant Sci; 2017; 8():2261. PubMed ID: 29403513 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Ali O; Ramsubhag A; Daniram Benn Jr Ramnarine S; Jayaraman J Sci Rep; 2022 May; 12(1):8042. PubMed ID: 35577794 [TBL] [Abstract][Full Text] [Related]
11. Petunia Performance Under Application of Animal-Based Protein Hydrolysates: Effects on Visual Quality, Biomass, Nutrient Content, Root Morphology, and Gas Exchange. Cristiano G; De Lucia B Front Plant Sci; 2021; 12():640608. PubMed ID: 34194447 [TBL] [Abstract][Full Text] [Related]
12. The Oomycete Microbe-Associated Molecular Pattern, Arachidonic Acid, and an Lewis DC; van der Zwan T; Richards A; Little H; Coaker GL; Bostock RM Phytopathology; 2023 Jun; 113(6):1084-1092. PubMed ID: 36598344 [TBL] [Abstract][Full Text] [Related]
13. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Paul K; Sorrentino M; Lucini L; Rouphael Y; Cardarelli M; Bonini P; Miras Moreno MB; Reynaud H; Canaguier R; Trtílek M; Panzarová K; Colla G Front Plant Sci; 2019; 10():493. PubMed ID: 31130970 [TBL] [Abstract][Full Text] [Related]
14. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. Shukla PS; Shotton K; Norman E; Neily W; Critchley AT; Prithiviraj B AoB Plants; 2018 Feb; 10(1):plx051. PubMed ID: 29308122 [TBL] [Abstract][Full Text] [Related]
15. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. do Rosário Rosa V; Farias Dos Santos AL; Alves da Silva A; Peduti Vicentini Sab M; Germino GH; Barcellos Cardoso F; de Almeida Silva M Plant Physiol Biochem; 2021 Jan; 158():228-243. PubMed ID: 33218845 [TBL] [Abstract][Full Text] [Related]
16. Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Sorrentino M; Panzarová K; Spyroglou I; Spíchal L; Buffagni V; Ganugi P; Rouphael Y; Colla G; Lucini L; De Diego N Front Plant Sci; 2021; 12():808711. PubMed ID: 35185959 [TBL] [Abstract][Full Text] [Related]
17. Shukla PS; Prithiviraj B Front Plant Sci; 2020; 11():601843. PubMed ID: 33488647 [TBL] [Abstract][Full Text] [Related]
18. Potential Use of Verma N; Sehrawat KD; Mundlia P; Sehrawat AR; Choudhary R; Rajput VD; Minkina T; van Hullebusch ED; Siddiqui MH; Alamri S Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834727 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable Mulch Films and Bioformulations Based on Staropoli A; Di Mola I; Ottaiano L; Cozzolino E; Pironti A; Lombardi N; Nanni B; Mori M; Vinale F; Woo SL; Marra R J Fungi (Basel); 2024 Jan; 10(2):. PubMed ID: 38392769 [TBL] [Abstract][Full Text] [Related]
20. Molecular and Physiological Effects of Magnesium-Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato. Hamedeh H; Antoni S; Cocciaglia L; Ciccolini V Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]