These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36262650)

  • 1. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture.
    Bora KA; Hashmi S; Zulfiqar F; Abideen Z; Ali H; Siddiqui ZS; Siddique KHM
    Front Plant Sci; 2022; 13():999505. PubMed ID: 36262650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector.
    Kranjc E; Drobne D
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31366106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered nanomaterials for plant growth and development: A perspective analysis.
    Verma SK; Das AK; Patel MK; Shah A; Kumar V; Gantait S
    Sci Total Environ; 2018 Jul; 630():1413-1435. PubMed ID: 29554761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterial Transformation in the Soil-Plant System: Implications for Food Safety and Application in Agriculture.
    Zhang P; Guo Z; Zhang Z; Fu H; White JC; Lynch I
    Small; 2020 May; 16(21):e2000705. PubMed ID: 32462786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles.
    Wang L; Yang D; Ma F; Wang G; You Y
    Chemosphere; 2022 Jan; 286(Pt 1):131644. PubMed ID: 34346335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guiding the design space for nanotechnology to advance sustainable crop production.
    Gilbertson LM; Pourzahedi L; Laughton S; Gao X; Zimmerman JB; Theis TL; Westerhoff P; Lowry GV
    Nat Nanotechnol; 2020 Sep; 15(9):801-810. PubMed ID: 32572231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health.
    Khan ST; Adil SF; Shaik MR; Alkhathlan HZ; Khan M; Khan M
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector.
    Bahrulolum H; Nooraei S; Javanshir N; Tarrahimofrad H; Mirbagheri VS; Easton AJ; Ahmadian G
    J Nanobiotechnology; 2021 Mar; 19(1):86. PubMed ID: 33771172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges.
    Chaudhry N; Dwivedi S; Chaudhry V; Singh A; Saquib Q; Azam A; Musarrat J
    Microb Pathog; 2018 Oct; 123():196-200. PubMed ID: 30009970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.
    Rai PK; Kumar V; Lee S; Raza N; Kim KH; Ok YS; Tsang DCW
    Environ Int; 2018 Oct; 119():1-19. PubMed ID: 29909166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Engineered Nanoparticles with the Agri-environment.
    Pradhan S; Mailapalli DR
    J Agric Food Chem; 2017 Sep; 65(38):8279-8294. PubMed ID: 28876911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-examination of engineered nanomaterials in crop production: Application and related implications.
    Kusiak M; Oleszczuk P; Jośko I
    J Hazard Mater; 2022 Feb; 424(Pt A):127374. PubMed ID: 34879568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for global descriptors of engineered nanomaterial fate and transport in the environment.
    Westerhoff P; Nowack B
    Acc Chem Res; 2013 Mar; 46(3):844-53. PubMed ID: 22950943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana.
    Montes A; Bisson MA; Gardella JA; Aga DS
    Sci Total Environ; 2017 Dec; 607-608():1497-1516. PubMed ID: 28793406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects.
    Sudheer S; Bai RG; Usmani Z; Sharma M
    Curr Genomics; 2020 Aug; 21(5):321-333. PubMed ID: 33093796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered nanomaterials in plant diseases: can we combat phytopathogens?
    Avila-Quezada GD; Golinska P; Rai M
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):117-129. PubMed ID: 34913996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.