BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 36263379)

  • 1. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease.
    Gelon PA; Dutchak PA; Sephton CF
    Front Mol Neurosci; 2022; 15():1000183. PubMed ID: 36263379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition.
    Pelaez MC; Desmeules A; Gelon PA; Glasson B; Marcadet L; Rodgers A; Phaneuf D; Pozzi S; Dutchak PA; Julien JP; Sephton CF
    Acta Neuropathol Commun; 2023 Nov; 11(1):182. PubMed ID: 37974279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD.
    Starr A; Sattler R
    Brain Res; 2018 Aug; 1693(Pt A):98-108. PubMed ID: 29453960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakdown of the central synapses in C9orf72-linked ALS/FTD.
    Ghaffari LT; Trotti D; Haeusler AR; Jensen BK
    Front Mol Neurosci; 2022; 15():1005112. PubMed ID: 36187344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72.
    Murray ME; DeJesus-Hernandez M; Rutherford NJ; Baker M; Duara R; Graff-Radford NR; Wszolek ZK; Ferman TJ; Josephs KA; Boylan KB; Rademakers R; Dickson DW
    Acta Neuropathol; 2011 Dec; 122(6):673-90. PubMed ID: 22083254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of Neurodegeneration Related to
    Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G
    Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Immune Activation by
    Trageser KJ; Smith C; Herman FJ; Ono K; Pasinetti GM
    Front Neurosci; 2019; 13():1298. PubMed ID: 31920478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis.
    Diekstra FP; Van Deerlin VM; van Swieten JC; Al-Chalabi A; Ludolph AC; Weishaupt JH; Hardiman O; Landers JE; Brown RH; van Es MA; Pasterkamp RJ; Koppers M; Andersen PM; Estrada K; Rivadeneira F; Hofman A; Uitterlinden AG; van Damme P; Melki J; Meininger V; Shatunov A; Shaw CE; Leigh PN; Shaw PJ; Morrison KE; Fogh I; Chiò A; Traynor BJ; Czell D; Weber M; Heutink P; de Bakker PI; Silani V; Robberecht W; van den Berg LH; Veldink JH
    Ann Neurol; 2014 Jul; 76(1):120-33. PubMed ID: 24931836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.
    Umoh ME; Dammer EB; Dai J; Duong DM; Lah JJ; Levey AI; Gearing M; Glass JD; Seyfried NT
    EMBO Mol Med; 2018 Jan; 10(1):48-62. PubMed ID: 29191947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Mechanisms Underpinning Neurophysiological Impairments in
    Pasniceanu IS; Atwal MS; Souza CDS; Ferraiuolo L; Livesey MR
    Front Cell Neurosci; 2021; 15():784833. PubMed ID: 34975412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features.
    Shaw MP; Higginbottom A; McGown A; Castelli LM; James E; Hautbergue GM; Shaw PJ; Ramesh TM
    Acta Neuropathol Commun; 2018 Nov; 6(1):125. PubMed ID: 30454072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia.
    Ranganathan R; Haque S; Coley K; Shepheard S; Cooper-Knock J; Kirby J
    Front Neurosci; 2020; 14():684. PubMed ID: 32733193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial Cell Dysfunction in
    Ghasemi M; Keyhanian K; Douthwright C
    Cells; 2021 Jan; 10(2):. PubMed ID: 33525344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of ALS and FTD: implications for translational studies.
    Liščić RM
    Arh Hig Rada Toksikol; 2015 Dec; 66(4):285-90. PubMed ID: 26751860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging perspectives of synaptic biomarkers in ALS and FTD.
    Krishnamurthy K; Pradhan RK
    Front Mol Neurosci; 2023; 16():1279999. PubMed ID: 38249293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder.
    Gao FB; Almeida S; Lopez-Gonzalez R
    EMBO J; 2017 Oct; 36(20):2931-2950. PubMed ID: 28916614
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 28.