These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36263760)

  • 41. Hydrogenated Boride-Assisted Gram-Scale Production of Platinum-Palladium Alloy Nanoparticles on Carbon Black for PEMFC Cathodes: A Study from a Practical Standpoint.
    Gao S; Zhao H; Gao P; Bi J; Liu D; Zhu D; Wang B; Yang S
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34750-34760. PubMed ID: 35867894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterogeneous Cu-Fe oxide catalysts for preferential CO oxidation (PROX) in H
    Dasireddy VDBC; Bharuth-Ram K; Hanzel D; Likozar B
    RSC Adv; 2020 Sep; 10(59):35792-35802. PubMed ID: 35517100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active Sites and Interfacial Reducibility of Cu
    Liu Z; Wang Q; Wu J; Zhang H; Liu Y; Zhang T; Tian H; Zeng S
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35804-35817. PubMed ID: 34313106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CO tolerance of Pt/FeO
    Liu L; Zhou F; Kodiyath R; Ueda S; Abe H; Wang D; Deng Y; Ye J
    Phys Chem Chem Phys; 2016 Oct; 18(42):29607-29615. PubMed ID: 27752660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes.
    Bai J; Ke S; Song J; Wang K; Sun C; Zhang J; Dou M
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5287-5297. PubMed ID: 35072443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-Time Optimization of a CO Preferential Oxidation Reactor Temperature with Extremum Seeking Control Techniques.
    Heo JP; Sung SW; Lee J
    ACS Omega; 2020 Jun; 5(23):13822-13828. PubMed ID: 32566848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Loading Pt-Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification.
    Wang F; Zhang Q; Rui Z; Li J; Liu J
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30381-30389. PubMed ID: 32469505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2.
    Perkas N; Teo J; Shen S; Wang Z; Highfield J; Zhong Z; Gedanken A
    Phys Chem Chem Phys; 2011 Sep; 13(34):15690-8. PubMed ID: 21799973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porous Single-Crystalline Monolith to Enhance Catalytic Activity and Stability.
    Yu X; Cheng F; Duan X; Xie K
    Research (Wash D C); 2022; 2022():9861518. PubMed ID: 35928301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-temperature PROX (preferential oxidation) on novel CeO(2)-supported Cu-cluster catalysts under fuel-cell operating conditions.
    Tada M; Bal R; Mu X; Coquet R; Namba S; Iwasawa Y
    Chem Commun (Camb); 2007 Nov; (44):4689-91. PubMed ID: 17989834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimum Preferential Oxidation Performance of CeO
    Ding J; Li L; Li H; Chen S; Fang S; Feng T; Li G
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7935-7945. PubMed ID: 29425017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.
    Xu L; Wu Z; Jin Y; Ma Y; Huang W
    Phys Chem Chem Phys; 2013 Aug; 15(29):12068-74. PubMed ID: 23576093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding of Correlation between Electronic Properties and Sulfur Tolerance of Pt-Based Catalysts for Hydrogen Oxidation.
    Ke S; Qiu L; Zhao W; Sun C; Cui B; Xu G; Dou M
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7768-7778. PubMed ID: 35104117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. IrPdRu/C as H
    Wang H; Abruña HD
    J Am Chem Soc; 2017 May; 139(20):6807-6810. PubMed ID: 28460520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.
    Wang CH; Hsu HC; Wang KC
    J Colloid Interface Sci; 2014 Aug; 427():91-7. PubMed ID: 24388448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanosized Pt-Co catalysts for the preferential CO oxidation.
    Ko EY; Park ED; Seo KW; Lee HC; Lee D; Kim S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3567-71. PubMed ID: 17252813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights.
    Tang M; Zhang S; Chen S
    Chem Soc Rev; 2022 Feb; 51(4):1529-1546. PubMed ID: 35138316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.
    Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells.
    Wang D; Subban CV; Wang H; Rus E; DiSalvo FJ; Abruña HD
    J Am Chem Soc; 2010 Aug; 132(30):10218-20. PubMed ID: 20662494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.