These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36263940)

  • 1. Neural underpinning of a respiration-associated resting-state fMRI network.
    Tu W; Zhang N
    Elife; 2022 Oct; 11():. PubMed ID: 36263940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity.
    Thompson GJ; Pan WJ; Keilholz SD
    J Neurophysiol; 2015 Jul; 114(1):114-24. PubMed ID: 26041826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI.
    Chang C; Glover GH
    Neuroimage; 2009 Oct; 47(4):1381-93. PubMed ID: 19393322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
    Wen H; Liu Z
    J Neurosci; 2016 Jun; 36(22):6030-40. PubMed ID: 27251624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing.
    Bailes SM; Gomez DEP; Setzer B; Lewis LD
    Elife; 2023 Aug; 12():. PubMed ID: 37565644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparity in temporal and spatial relationships between resting-state electrophysiological and fMRI signals.
    Tu W; Cramer SR; Zhang N
    Res Sq; 2024 Jun; ():. PubMed ID: 37645880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity.
    Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F
    Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thalamic low frequency activity facilitates resting-state cortical interhemispheric MRI functional connectivity.
    Wang X; Leong ATL; Chan RW; Liu Y; Wu EX
    Neuroimage; 2019 Nov; 201():115985. PubMed ID: 31299370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing systemic physiological effects on the blood oxygen level dependent signal of resting-state fMRI in time-frequency space using wavelets.
    Lee QN; Chen JE; Wheeler GJ; Fan AP
    Hum Brain Mapp; 2023 Dec; 44(18):6537-6551. PubMed ID: 37950750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.
    Power JD; Plitt M; Gotts SJ; Kundu P; Voon V; Bandettini PA; Martin A
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2105-E2114. PubMed ID: 29440410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Simultaneous Resting-State Electroencephalography, Functional Magnetic Resonance Imaging, and Eye-Tracker Methods to Determine and Verify Electroencephalography Vigilance Measure.
    Mayeli A; Al Zoubi O; Misaki M; Stewart JL; Zotev V; Luo Q; Phillips R; Fischer S; Götz M; Paulus MP; Refai H; Bodurka J
    Brain Connect; 2020 Dec; 10(10):535-546. PubMed ID: 33112650
    [No Abstract]   [Full Text] [Related]  

  • 14. Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping.
    Lemée JM; Berro DH; Bernard F; Chinier E; Leiber LM; Menei P; Ter Minassian A
    Brain Behav; 2019 Oct; 9(10):e01362. PubMed ID: 31568681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting-State fMRI: Emerging Concepts for Future Clinical Application.
    Amemiya S; Takao H; Abe O
    J Magn Reson Imaging; 2024 Apr; 59(4):1135-1148. PubMed ID: 37424140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time presurgical resting-state fMRI in patients with brain tumors: Quality control and comparison with task-fMRI and intraoperative mapping.
    Vakamudi K; Posse S; Jung R; Cushnyr B; Chohan MO
    Hum Brain Mapp; 2020 Feb; 41(3):797-814. PubMed ID: 31692177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural and metabolic basis of dynamic resting state fMRI.
    Thompson GJ
    Neuroimage; 2018 Oct; 180(Pt B):448-462. PubMed ID: 28899744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
    Thompson GJ; Pan WJ; Magnuson ME; Jaeger D; Keilholz SD
    Neuroimage; 2014 Jan; 84():1018-31. PubMed ID: 24071524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiband fMRI as a plausible, time-saving technique for resting-state data acquisition: Study on functional connectivity mapping using graph theoretical measures.
    Smitha KA; Arun KM; Rajesh PG; Joel SE; Venkatesan R; Thomas B; Kesavadas C
    Magn Reson Imaging; 2018 Nov; 53():1-6. PubMed ID: 29928936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.