These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36263940)

  • 21. Multiband fMRI as a plausible, time-saving technique for resting-state data acquisition: Study on functional connectivity mapping using graph theoretical measures.
    Smitha KA; Arun KM; Rajesh PG; Joel SE; Venkatesan R; Thomas B; Kesavadas C
    Magn Reson Imaging; 2018 Nov; 53():1-6. PubMed ID: 29928936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.
    Chen T; Ryali S; Qin S; Menon V
    Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An orderly sequence of autonomic and neural events at transient arousal changes.
    Gu Y; Han F; Sainburg LE; Schade MM; Buxton OM; Duyn JH; Liu X
    Neuroimage; 2022 Dec; 264():119720. PubMed ID: 36332366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
    Belloy ME; Naeyaert M; Abbas A; Shah D; Vanreusel V; van Audekerke J; Keilholz SD; Keliris GA; Van der Linden A; Verhoye M
    Neuroimage; 2018 Oct; 180(Pt B):463-484. PubMed ID: 29454935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling.
    Agarwal S; Lu H; Pillai JJ
    Brain Connect; 2017 Aug; 7(6):382-389. PubMed ID: 28657344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient Arousal Modulations Contribute to Resting-State Functional Connectivity Changes Associated with Head Motion Parameters.
    Gu Y; Han F; Sainburg LE; Liu X
    Cereb Cortex; 2020 Sep; 30(10):5242-5256. PubMed ID: 32406488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks.
    Driver ID; Whittaker JR; Bright MG; Muthukumaraswamy SD; Murphy K
    J Neurosci; 2016 Aug; 36(33):8541-50. PubMed ID: 27535903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gaining insight into the neural basis of resting-state fMRI signal.
    Ma Z; Zhang Q; Tu W; Zhang N
    Neuroimage; 2022 Apr; 250():118960. PubMed ID: 35121182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global brain signal in awake rats.
    Ma Y; Ma Z; Liang Z; Neuberger T; Zhang N
    Brain Struct Funct; 2020 Jan; 225(1):227-240. PubMed ID: 31802256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of respiratory measures in young adults scanned at rest, including systematic changes and "missed" deep breaths.
    Power JD; Lynch CJ; Dubin MJ; Silver BM; Martin A; Jones RM
    Neuroimage; 2020 Jan; 204():116234. PubMed ID: 31589990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
    Stickland RC; Zvolanek KM; Moia S; Ayyagari A; Caballero-Gaudes C; Bright MG
    Neuroimage; 2021 Oct; 239():118306. PubMed ID: 34175427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of respiration variations on independent component analysis results of resting state functional connectivity.
    Birn RM; Murphy K; Bandettini PA
    Hum Brain Mapp; 2008 Jul; 29(7):740-50. PubMed ID: 18438886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
    Birn RM; Diamond JB; Smith MA; Bandettini PA
    Neuroimage; 2006 Jul; 31(4):1536-48. PubMed ID: 16632379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.
    Harris NG; Verley DR; Gutman BA; Thompson PM; Yeh HJ; Brown JA
    Exp Neurol; 2016 Mar; 277():124-138. PubMed ID: 26730520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of respiratory variation signals from fMRI data.
    Salas JA; Bayrak RG; Huo Y; Chang C
    Neuroimage; 2021 Jan; 225():117459. PubMed ID: 33129927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2019 Nov; 202():116150. PubMed ID: 31487547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.