BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36263990)

  • 1. Enhancement of
    Blanco-Vieites M; Suárez-Montes D; Hernández Battez A; Rodríguez E
    Int J Phytoremediation; 2023; 25(9):1116-1126. PubMed ID: 36263990
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Mukhopadhyay S; Jana A; Ghosh S; Majumdar S; Ghosh TK
    Int J Phytoremediation; 2022; 24(13):1364-1375. PubMed ID: 35075966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae production in olive mill wastewater fractions and cattle digestate slurry: Bioremediation effects and suitability for energy and feed uses.
    Cicci A; Scarponi P; Cavinato C; Bravi M
    Sci Total Environ; 2024 Jul; 932():172773. PubMed ID: 38685426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algal-based system for removal of emerging pollutants from wastewater: A review.
    Gondi R; Kavitha S; Yukesh Kannah R; Parthiba Karthikeyan O; Kumar G; Kumar Tyagi V; Rajesh Banu J
    Bioresour Technol; 2022 Jan; 344(Pt B):126245. PubMed ID: 34743994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater.
    Lv J; Guo J; Feng J; Liu Q; Xie S
    Bioresour Technol; 2017 Jun; 234():289-296. PubMed ID: 28334665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Applications of
    Abreu AP; Martins R; Nunes J
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627840
    [No Abstract]   [Full Text] [Related]  

  • 7. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy.
    Bhatt P; Bhandari G; Bhatt K; Simsek H
    Chemosphere; 2022 Nov; 306():135576. PubMed ID: 35803375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis.
    Wang Q; Liu W; Li X; Wang R; Zhai J
    Sci Total Environ; 2020 Mar; 706():135686. PubMed ID: 31784167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural pigments from microalgae grown in industrial wastewater.
    Arashiro LT; Boto-Ordóñez M; Van Hulle SWH; Ferrer I; Garfí M; Rousseau DPL
    Bioresour Technol; 2020 May; 303():122894. PubMed ID: 32032937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment.
    López-Pacheco IY; Carrillo-Nieves D; Salinas-Salazar C; Silva-Núñez A; Arévalo-Gallegos A; Barceló D; Afewerki S; Iqbal HMN; Parra-Saldívar R
    Sci Total Environ; 2019 Aug; 676():356-367. PubMed ID: 31048166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation.
    Hao TB; Balamurugan S; Zhang ZH; Liu SF; Wang X; Li DW; Yang WD; Li HY
    J Hazard Mater; 2022 Mar; 426():127820. PubMed ID: 34865896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis.
    Depraetere O; Foubert I; Muylaert K
    Bioresour Technol; 2013 Nov; 148():366-72. PubMed ID: 24063819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants.
    Kumar N; Shukla P
    Environ Res; 2024 Apr; 247():118135. PubMed ID: 38218523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes.
    Salgado EM; Gonçalves AL; Sánchez-Soberón F; Ratola N; Pires JCM
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater.
    Jain M; Khan SA; Sharma K; Jadhao PR; Pant KK; Ziora ZM; Blaskovich MAT
    Bioresour Technol; 2022 Jan; 344(Pt B):126305. PubMed ID: 34752892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production.
    Leong WH; Azella Zaine SN; Ho YC; Uemura Y; Lam MK; Khoo KS; Kiatkittipong W; Cheng CK; Show PL; Lim JW
    J Environ Manage; 2019 Nov; 249():109384. PubMed ID: 31419674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: Production of carbohydrate-rich biomass.
    Mata SN; de Souza Santos T; Cardoso LG; Andrade BB; Duarte JH; Costa JAV; Oliveira de Souza C; Druzian JI
    Bioresour Technol; 2020 Sep; 311():123495. PubMed ID: 32413641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.