These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36263990)

  • 41. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents.
    El Baky HHA; El Baroty GS; Mostafa EM
    Recent Pat Food Nutr Agric; 2020; 11(1):40-48. PubMed ID: 30588890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient removal of thiamethoxam by freshwater microalgae Scenedesmus sp. TXH: Removal mechanism, metabolic degradation and application.
    Quan L; Cheng Y; Wang J; Chen Y; Li D; Wang S; Li B; Zhang Z; Yang L; Wu L
    J Environ Manage; 2023 Apr; 332():117388. PubMed ID: 36731413
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production.
    Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT
    Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization.
    Qiu S; Yu Z; Hu Y; Chen Z; Guo J; Xia W; Ge S
    Water Res; 2021 May; 196():117038. PubMed ID: 33751972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The kinetics of tempeh wastewater treatment using Arthrospira platensis.
    Riadi L; Askitosari TD; Widhi RPD; Laurensia M; Agustin YE; Arifin Y
    Water Sci Technol; 2021 Jun; 83(12):2997-3006. PubMed ID: 34185694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal.
    Dahmen-Ben Moussa I; Maalej A; Masmoudi MA; Feki F; Choura S; Baccar N; Jelail L; Karray F; Chamkha M; Sayadi S
    J Sci Food Agric; 2021 Oct; 101(13):5508-5519. PubMed ID: 33682135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics analysis.
    Dong D; Sun H; Qi Z; Liu X
    Chemosphere; 2021 Feb; 265():129151. PubMed ID: 33302206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents.
    da Silva Rodrigues DA; da Cunha CCRF; Freitas MG; de Barros ALC; E Castro PBN; Pereira AR; de Queiroz Silva S; da Fonseca Santiago A; de Cássia Franco Afonso RJ
    Sci Total Environ; 2020 Dec; 749():141441. PubMed ID: 32836119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in delivery methods of
    ElFar OA; Billa N; Lim HR; Chew KW; Cheah WY; Munawaroh HSH; Balakrishnan D; Show PL
    Bioengineered; 2022 Jun; 13(6):14681-14718. PubMed ID: 35946342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Algal-based system for removal of emerging pollutants from wastewater: A review.
    Gondi R; Kavitha S; Yukesh Kannah R; Parthiba Karthikeyan O; Kumar G; Kumar Tyagi V; Rajesh Banu J
    Bioresour Technol; 2022 Jan; 344(Pt B):126245. PubMed ID: 34743994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phycoremediation of municipal wastewater by microalgae to produce biofuel.
    Singh AK; Sharma N; Farooqi H; Abdin MZ; Mock T; Kumar S
    Int J Phytoremediation; 2017 Sep; 19(9):805-812. PubMed ID: 28156133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prospects of a hot spring-originated novel cyanobacterium, Scytonema ambikapurensis, for wastewater treatment and exopolysaccharide-enriched biomass production.
    Jaiswal TP; Chakraborty S; Sharma S; Mishra A; Mishra AK; Singh SS
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53424-53444. PubMed ID: 36856995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production.
    López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS
    J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach.
    Mishra S; Mohanty K
    Bioresour Technol; 2019 Feb; 273():177-184. PubMed ID: 30445270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater.
    Lv J; Guo J; Feng J; Liu Q; Xie S
    Bioresour Technol; 2017 Jun; 234():289-296. PubMed ID: 28334665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remediation Capacity of Different Microalgae in Effluents Derived from the Cigarette Butt Cleaning Process.
    Chiellini C; Mariotti L; Huarancca Reyes T; de Arruda EJ; Fonseca GG; Guglielminetti L
    Plants (Basel); 2022 Jul; 11(13):. PubMed ID: 35807722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis.
    Melo JM; Ribeiro MR; Telles TS; Amaral HF; Andrade DS
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22708-22720. PubMed ID: 34797540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3.
    Ganeshkumar V; Subashchandrabose SR; Dharmarajan R; Venkateswarlu K; Naidu R; Megharaj M
    Bioresour Technol; 2018 May; 256():254-258. PubMed ID: 29454276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis.
    Markou G; Vandamme D; Muylaert K
    Bioresour Technol; 2014 Mar; 155():373-8. PubMed ID: 24472681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.