These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36263990)

  • 61. Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1.
    Mar CC; Fan Y; Li FL; Hu GR
    Int J Phytoremediation; 2016 Dec; 18(12):1195-201. PubMed ID: 27260474
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioremediation of aquaculture wastewater with the microalgae Tetraselmis suecica: Semi-continuous experiments, simulation and photo-respirometric tests.
    Andreotti V; Solimeno A; Rossi S; Ficara E; Marazzi F; Mezzanotte V; García J
    Sci Total Environ; 2020 Oct; 738():139859. PubMed ID: 32534276
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability.
    Chen Z; Qiu S; Li M; Xu S; Ge S
    Water Res; 2022 Nov; 226():119305. PubMed ID: 36332297
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effects of refractory pollutants in swine wastewater on the growth of
    Cheng P; Osei-Wusu D; Zhou C; Wang Y; Xu Z; Chang T; Huo S
    Int J Phytoremediation; 2020; 22(3):241-250. PubMed ID: 31475567
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An approach for phycoremediation of different wastewaters and biodiesel production using microalgae.
    Amit ; Ghosh UK
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18673-18681. PubMed ID: 29705901
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization.
    Zhou H; Sheng Y; Zhao X; Gross M; Wen Z
    Bioresour Technol; 2018 Sep; 264():24-34. PubMed ID: 29783128
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential of microalgae in the bioremediation of water with chloride content.
    Ramírez ME; Vélez YH; Rendón L; Alzate E
    Braz J Biol; 2018 Aug; 78(3):472-476. PubMed ID: 29069164
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response.
    Nagarajan D; Lee DJ; Varjani S; Lam SS; Allakhverdiev SI; Chang JS
    Sci Total Environ; 2022 Nov; 845():157110. PubMed ID: 35787906
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective.
    Nagarajan D; Lee DJ; Chen CY; Chang JS
    Bioresour Technol; 2020 Apr; 302():122817. PubMed ID: 32007309
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy.
    Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P
    J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy.
    Satya ADM; Cheah WY; Yazdi SK; Cheng YS; Khoo KS; Vo DN; Bui XD; Vithanage M; Show PL
    Environ Res; 2023 Feb; 218():114948. PubMed ID: 36455634
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae.
    Peng Y; Deng A; Gong X; Li X; Zhang Y
    Bioresour Technol; 2017 Nov; 243():628-633. PubMed ID: 28709067
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nutrients removal and recovery from saline wastewater by Spirulina platensis.
    Zhou W; Li Y; Gao Y; Zhao H
    Bioresour Technol; 2017 Dec; 245(Pt A):10-17. PubMed ID: 28892678
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CO
    López-Pacheco IY; Castillo-Vacas EI; Castañeda-Hernández L; Gradiz-Menjivar A; Rodas-Zuluaga LI; Castillo-Zacarías C; Sosa-Hernández JE; Barceló D; Iqbal HMN; Parra-Saldívar R
    Sci Total Environ; 2021 Oct; 790():148222. PubMed ID: 34380253
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Application of horizontal-flow anaerobic immobilized biomass reactor for bioremediation of acid mine drainage.
    Rodriguez RP; Vich DV; Garcia ML; Varesche MB; Zaiat M
    J Water Health; 2016 Jun; 14(3):399-410. PubMed ID: 27280606
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioremediation of Ni, Al and Pb by the living cells of a resistant strain of microalga.
    Ahmad N; Mounsef JR; Abou Tayeh J; Lteif R
    Water Sci Technol; 2020 Sep; 82(5):851-860. PubMed ID: 33031065
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sulfate and phosphate ions removal using novel nano-adsorbents: modeling and optimization, kinetics, isotherm and thermodynamic studies.
    Shahzadi T; Anwaar A; Riaz T; Zaib M
    Int J Phytoremediation; 2022; 24(14):1518-1532. PubMed ID: 35188838
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy.
    Lim HR; Khoo KS; Chew KW; Chang CK; Munawaroh HSH; Kumar PS; Huy ND; Show PL
    Environ Pollut; 2021 Sep; 284():117492. PubMed ID: 34261213
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater.
    Nagabalaji V; Maharaja P; Nishanthi R; Sathish G; Suthanthararajan R; Srinivasan SV
    J Environ Manage; 2023 Sep; 341():118008. PubMed ID: 37146488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.