These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36264124)

  • 1. Powerful and interpretable control of false discoveries in two-group differential expression studies.
    Enjalbert-Courrech N; Neuvial P
    Bioinformatics; 2022 Nov; 38(23):5214-5221. PubMed ID: 36264124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global FDR control across multiple RNAseq experiments.
    Liou L; Hornburg M; Robertson DS
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36326442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional local false discovery rate for microarray studies.
    Ploner A; Calza S; Gusnanto A; Pawitan Y
    Bioinformatics; 2006 Mar; 22(5):556-65. PubMed ID: 16368770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.
    Leng N; Dawson JA; Thomson JA; Ruotti V; Rissman AI; Smits BM; Haag JD; Gould MN; Stewart RM; Kendziorski C
    Bioinformatics; 2013 Apr; 29(8):1035-43. PubMed ID: 23428641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powerful differential expression analysis incorporating network topology for next-generation sequencing data.
    Dona MSI; Prendergast LA; Mathivanan S; Keerthikumar S; Salim A
    Bioinformatics; 2017 May; 33(10):1505-1513. PubMed ID: 28172447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.
    Bi R; Liu P
    BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of false discovery proportion under general dependence.
    Pawitan Y; Calza S; Ploner A
    Bioinformatics; 2006 Dec; 22(24):3025-31. PubMed ID: 17046978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
    Benidt S; Nettleton D
    Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On correcting the overestimation of the permutation-based false discovery rate estimator.
    Jiao S; Zhang S
    Bioinformatics; 2008 Aug; 24(15):1655-61. PubMed ID: 18573796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjustment of spurious correlations in co-expression measurements from RNA-Sequencing data.
    Hsieh PH; Lopes-Ramos CM; Zucknick M; Sandve GK; Glass K; Kuijjer ML
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37802917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. switchde: inference of switch-like differential expression along single-cell trajectories.
    Campbell KR; Yau C
    Bioinformatics; 2017 Apr; 33(8):1241-1242. PubMed ID: 28011787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. powsimR: power analysis for bulk and single cell RNA-seq experiments.
    Vieth B; Ziegenhain C; Parekh S; Enard W; Hellmann I
    Bioinformatics; 2017 Nov; 33(21):3486-3488. PubMed ID: 29036287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fdrci: FDR confidence interval selection and adjustment for large-scale hypothesis testing.
    Millstein J; Battaglin F; Arai H; Zhang W; Jayachandran P; Soni S; Parikh AR; Mancao C; Lenz HJ
    Bioinform Adv; 2022; 2(1):vbac047. PubMed ID: 35747247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pulseR: Versatile computational analysis of RNA turnover from metabolic labeling experiments.
    Uvarovskii A; Dieterich C
    Bioinformatics; 2017 Oct; 33(20):3305-3307. PubMed ID: 29028260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection.
    Chu HT; Hsiao WW; Chen JC; Yeh TJ; Tsai MH; Lin H; Liu YW; Lee SA; Chen CC; Tsao TT; Kao CY
    Bioinformatics; 2013 Apr; 29(8):1004-10. PubMed ID: 23457040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical FDR-based sample size calculations in microarray experiments.
    Hu J; Zou F; Wright FA
    Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network module-based model in the differential expression analysis for RNA-seq.
    Lei M; Xu J; Huang LC; Wang L; Li J
    Bioinformatics; 2017 Sep; 33(17):2699-2705. PubMed ID: 28407034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment.
    Zhang Z; Huang S; Wang J; Zhang X; Pardo Manuel de Villena F; McMillan L; Wang W
    Bioinformatics; 2013 Jul; 29(13):i291-9. PubMed ID: 23812996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.