These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36264200)

  • 1. Label-Free SERS Detection of Protein Damage in Organelles under Electrostimulation with 2D AuNPs-based Nanomembranes as Substrates.
    Qi G; Diao X; Hou S; Kong J; Jin Y
    Anal Chem; 2022 Nov; 94(43):14931-14937. PubMed ID: 36264200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Label-Free SERS Profiling of Exosomes for Accurate Fuzzy Diagnosis of Cancer and Dynamic Monitoring of Drug Therapeutic Processes.
    Diao X; Li X; Hou S; Li H; Qi G; Jin Y
    Anal Chem; 2023 May; 95(19):7552-7559. PubMed ID: 37139959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostimulus-triggered reactive oxygen species level in organelles revealed by organelle-targeting SERS nanoprobes.
    Chen J; Qu X; Qi G; Xu W; Jin Y; Xu S
    Anal Bioanal Chem; 2022 Sep; 414(23):6965-6975. PubMed ID: 35976421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic SERS Au Nanosunflowers for Sensitive and Label-Free Diagnosis of DNA Base Damage in Stimulus-Induced Cell Apoptosis.
    Qi G; Wang D; Li C; Ma K; Zhang Y; Jin Y
    Anal Chem; 2020 Sep; 92(17):11755-11762. PubMed ID: 32786448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification.
    Han Y; Wu SR; Tian XD; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications.
    Kim W; Lee SH; Ahn YJ; Lee SH; Ryu J; Choi SK; Choi S
    Biosens Bioelectron; 2018 Jul; 111():59-65. PubMed ID: 29649653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles decorated 2D-WSe
    Majumdar D; Jana S; Kumar Ray S
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121349. PubMed ID: 35550990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation.
    Cui Y; Wang H; Liu S; Wang Y; Huang J
    Analyst; 2020 Jan; 145(2):445-452. PubMed ID: 31819931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors.
    Cao Y; Li DW; Zhao LJ; Liu XY; Cao XM; Long YT
    Anal Chem; 2015 Oct; 87(19):9696-701. PubMed ID: 26324383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles paper as a SERS bio-diagnostic platform.
    Ngo YH; Then WL; Shen W; Garnier G
    J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Activation and Tracing of Caspase-3 Involved Cell Apoptosis by Combined Electrostimulation and Smart Signal-Amplified SERS Nanoprobes.
    Qi G; Sun D; Tian Y; Xu C; Zhang Y; Wang D; Ma K; Xu S; Jin Y
    Anal Chem; 2020 Jun; 92(11):7861-7868. PubMed ID: 32395992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles.
    Verde A; Mangini M; Managò S; Tramontano C; Rea I; Boraschi D; Italiani P; De Luca AC
    Front Immunol; 2021; 12():758410. PubMed ID: 34691081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfiber-directed reversible assembly of Au nanoparticles for SERS detection of pollutants.
    Xu Y; Zhong H; Shi M; Zheng Z; Liu S; Shou Q; Li H; Yang G; Li Z; Xing X
    Opt Lett; 2022 Apr; 47(8):2028-2031. PubMed ID: 35427328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer.
    Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ
    Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.
    Xiong Z; Lin M; Lin H; Huang M
    Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine.
    Satheeshkumar E; Karuppaiya P; Sivashanmugan K; Chao WT; Tsay HS; Yoshimura M
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():91-97. PubMed ID: 28347923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.