These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36264274)
1. Light-Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals. Zhang Y; Han Y; Zhu S; Qing FL; Xue XS; Chu L Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202210838. PubMed ID: 36264274 [TBL] [Abstract][Full Text] [Related]
2. Photoinduced Nickel-Catalyzed Homolytic C(sp Qin J; Li Y; Hu Y; Huang Z; Miao W; Chu L J Am Chem Soc; 2024 Oct; 146(40):27583-27593. PubMed ID: 39325022 [TBL] [Abstract][Full Text] [Related]
3. Direct cyanation, hydrocyanation, dicyanation and cyanofunctionalization of alkynes. Peng L; Hu Z; Wang H; Wu L; Jiao Y; Tang Z; Xu X RSC Adv; 2020 Mar; 10(17):10232-10244. PubMed ID: 35498608 [TBL] [Abstract][Full Text] [Related]
4. Access to 1,3-Dinitriles by Enantioselective Auto-tandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Long J; Yu R; Gao J; Fang X Angew Chem Int Ed Engl; 2020 Apr; 59(17):6785-6789. PubMed ID: 32030844 [TBL] [Abstract][Full Text] [Related]
5. Stereospecific Synthesis of Hazra A; Chen J; Lalic G J Am Chem Soc; 2019 Aug; 141(32):12464-12469. PubMed ID: 31373807 [TBL] [Abstract][Full Text] [Related]
6. Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile. Bhunia A; Bergander K; Studer A J Am Chem Soc; 2018 Nov; 140(47):16353-16359. PubMed ID: 30392374 [TBL] [Abstract][Full Text] [Related]
7. Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Zhao X; Feng X; Chen F; Zhu S; Qing FL; Chu L Angew Chem Int Ed Engl; 2021 Dec; 60(51):26511-26517. PubMed ID: 34651398 [TBL] [Abstract][Full Text] [Related]
8. Rh-Catalyzed Anti-Markovnikov Hydrocyanation of Terminal Alkynes. Ye F; Chen J; Ritter T J Am Chem Soc; 2017 May; 139(21):7184-7187. PubMed ID: 28525275 [TBL] [Abstract][Full Text] [Related]
9. Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process. Wang H; Lu Q; Chiang CW; Luo Y; Zhou J; Wang G; Lei A Angew Chem Int Ed Engl; 2017 Jan; 56(2):595-599. PubMed ID: 27925394 [TBL] [Abstract][Full Text] [Related]
10. Catalytic anti-Markovnikov hydrobromination of alkynes. Uehling MR; Rucker RP; Lalic G J Am Chem Soc; 2014 Jun; 136(24):8799-803. PubMed ID: 24896663 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects. Jiang D; Fu M; Zhang Y; Li Q; Guo K; Yang Y; Zhao L J Comput Chem; 2020 Feb; 41(4):279-289. PubMed ID: 31713268 [TBL] [Abstract][Full Text] [Related]
12. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu-Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes*. Gao Y; Yazdani S; Kendrick A; Junor GP; Kang T; Grotjahn DB; Bertrand G; Jazzar R; Engle KM Angew Chem Int Ed Engl; 2021 Sep; 60(36):19871-19878. PubMed ID: 34159696 [TBL] [Abstract][Full Text] [Related]
13. Photoredox- and Nickel-Catalyzed Hydroalkylation of Alkynes with 4-Alkyl-1,4-dihydropyridines: Ligand-Controlled Regioselectivity. Zhang Y; Tanabe Y; Kuriyama S; Nishibayashi Y Chemistry; 2022 Jun; 28(36):e202200727. PubMed ID: 35475521 [TBL] [Abstract][Full Text] [Related]
14. Cu-Catalyzed direct cyanation of terminal alkynes with AMBN or AIBN as the cyanation reagent. Rong G; Mao J; Zheng Y; Yao R; Xu X Chem Commun (Camb); 2015 Sep; 51(72):13822-5. PubMed ID: 26235725 [TBL] [Abstract][Full Text] [Related]
15. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp Kariofillis SK; Doyle AG Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841 [TBL] [Abstract][Full Text] [Related]
16. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis. Iqbal N; Jung J; Park S; Cho EJ Angew Chem Int Ed Engl; 2014 Jan; 53(2):539-42. PubMed ID: 24259270 [TBL] [Abstract][Full Text] [Related]
17. Decarboxylative Alkynylation and Cyanation of Carboxylic Acids using Photoredox Catalysis and Hypervalent Iodine Reagents. Vaillant FL; Waser J Chimia (Aarau); 2017 Apr; 71(4):226-230. PubMed ID: 28446341 [TBL] [Abstract][Full Text] [Related]
18. Room temperature decarboxylative cyanation of carboxylic acids using photoredox catalysis and cyanobenziodoxolones: a divergent mechanism compared to alkynylation. Le Vaillant F; Wodrich MD; Waser J Chem Sci; 2017 Mar; 8(3):1790-1800. PubMed ID: 28451301 [TBL] [Abstract][Full Text] [Related]
19. Computational Study Revealing the Mechanistic Origin of Distinct Performances of P(O)-H/OH Compounds in Palladium-Catalyzed Hydrophosphorylation of Terminal Alkynes: Switchable Mechanisms and Potential Side Reactions. Jiang YY; Fan X; Li Y; Ji GC; Liu P; Bi S J Org Chem; 2022 Nov; 87(21):14673-14684. PubMed ID: 36226799 [TBL] [Abstract][Full Text] [Related]
20. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]