BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 36264314)

  • 21. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks.
    Majdi MS; Keerthivasan MB; Rutt BK; Zahr NM; Rodriguez JJ; Saranathan M
    Magn Reson Imaging; 2020 Nov; 73():45-54. PubMed ID: 32828985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach.
    Salem M; Ryan MA; Oliver A; Hussain KF; Lladó X
    Front Neurosci; 2022; 16():1007619. PubMed ID: 36507318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
    Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D
    Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry.
    Krönke M; Eilers C; Dimova D; Köhler M; Buschner G; Schweiger L; Konstantinidou L; Makowski M; Nagarajah J; Navab N; Weber W; Wendler T
    PLoS One; 2022; 17(7):e0268550. PubMed ID: 35905038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL.
    Chaves H; Dorr F; Costa ME; Serra MM; Slezak DF; Farez MF; Sevlever G; Yañez P; Cejas C
    J Neuroradiol; 2021 May; 48(3):147-156. PubMed ID: 33137334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gadolinium effect on thalamus and whole brain tissue segmentation.
    Hannoun S; Baalbaki M; Haddad R; Saaybi S; El Ayoubi NK; Yamout BI; Khoury SJ; Hourani R
    Neuroradiology; 2018 Nov; 60(11):1167-1173. PubMed ID: 30128599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.
    Vidal JP; Danet L; Péran P; Pariente J; Cuadra MB; Zahr NM; Barbeau EJ; Saranathan M
    medRxiv; 2024 Feb; ():. PubMed ID: 38352493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-label CNN model for the automatic detection and segmentation of gliomas using [
    Rahimpour M; Boellaard R; Jentjens S; Deckers W; Goffin K; Koole M
    Eur J Nucl Med Mol Imaging; 2023 Jul; 50(8):2441-2452. PubMed ID: 36933075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning-based fully automatic segmentation of wrist cartilage in MR images.
    Brui E; Efimtcev AY; Fokin VA; Fernandez R; Levchuk AG; Ogier AC; Samsonov AA; Mattei JP; Melchakova IV; Bendahan D; Andreychenko A
    NMR Biomed; 2020 Aug; 33(8):e4320. PubMed ID: 32394453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prostate cancer detection and segmentation on MRI using non-local mask R-CNN with histopathological ground truth.
    Dai Z; Jambor I; Taimen P; Pantelic M; Elshaikh M; Dabaja A; Rogers C; Ettala O; Boström PJ; Aronen HJ; Merisaari H; Wen N
    Med Phys; 2023 Dec; 50(12):7748-7763. PubMed ID: 37358061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection.
    Raab F; Malloni W; Wein S; Greenlee MW; Lang EW
    Sci Rep; 2023 Nov; 13(1):21154. PubMed ID: 38036638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
    Makowski C; Béland S; Kostopoulos P; Bhagwat N; Devenyi GA; Malla AK; Joober R; Lepage M; Chakravarty MM
    Neuroimage; 2018 Apr; 170():182-198. PubMed ID: 28259781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CNN-based fully automatic wrist cartilage volume quantification in MR images: A comparative analysis between different CNN architectures.
    Vladimirov N; Brui E; Levchuk A; Al-Haidri W; Fokin V; Efimtcev A; Bendahan D
    Magn Reson Med; 2023 Aug; 90(2):737-751. PubMed ID: 37094028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A distance map regularized CNN for cardiac cine MR image segmentation.
    Dangi S; Linte CA; Yaniv Z
    Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.