These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36265080)

  • 21. A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries.
    Hu Y; Ye D; Luo B; Hu H; Zhu X; Wang S; Li L; Peng S; Wang L
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29164706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial Isolation-Inspired Ultrafine CoSe
    Yao L; Ju S; Xu T; Yu X
    ACS Nano; 2021 Aug; 15(8):13662-13673. PubMed ID: 34355555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries.
    Ai Y; Wu SC; Wang K; Yang TY; Liu M; Liao HJ; Sun J; Chen JH; Tang SY; Wu DC; Su TY; Wang YC; Chen HC; Zhang S; Liu WW; Chen YZ; Lee L; He JH; Wang ZM; Chueh YL
    ACS Nano; 2020 Jul; 14(7):8539-8550. PubMed ID: 32520534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. β-Hydrogen of Polythiophene Induced Aluminum Ion Storage for High-Performance Al-Polythiophene Batteries.
    Kong D; Fan H; Ding X; Wang D; Tian S; Hu H; Du D; Li Y; Gao X; Hu H; Xue Q; Yan Z; Ren H; Xing W
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46065-46072. PubMed ID: 32955247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition metal dichalcogenide-based materials for rechargeable aluminum-ion batteries: A mini-review.
    Nandi S; Pumera M
    ChemSusChem; 2024 May; 17(9):e202301434. PubMed ID: 38212248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterostructure Engineering for Aluminum-Ion Batteries: Mechanism, Challenge, and Perspective.
    Yang C; Liang Z; Dong B; Guo Y; Xie W; Chen M; Zhang K; Zhou L
    Small; 2024 Nov; 20(48):e2405495. PubMed ID: 39235359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intercalation of Al
    Zheng J; Yi K; Chang C
    Small Methods; 2024 Aug; ():e2401000. PubMed ID: 39212650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MXene/TiO
    Gao P; Shi H; Ma T; Liang S; Xia Y; Xu Z; Wang S; Min C; Liu L
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51028-51038. PubMed ID: 34672200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel K
    Feng Q; Liu Y; Yan J; Feng W; Ji S; Tang Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water-Stabilized Vanadyl Phosphate Monohydrate Ultrathin Nanosheets toward High Voltage Al-Ion Batteries.
    Zheng J; Xu T; Xia G; Cui WG; Yang Y; Yu X
    Small; 2023 May; 19(18):e2207619. PubMed ID: 36775918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rechargeable aluminum-ion battery based on a VS
    Wu L; Sun R; Xiong F; Pei C; Han K; Peng C; Fan Y; Yang W; An Q; Mai L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22563-22568. PubMed ID: 30159553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile one pot synthesis of highly photoresponsive coinage metal selenides (Cu
    Karmakar G; Tyagi A; Shah AY; Nigam S; Wadawale AP; Kedarnath G; Vats BG; Naveen Kumar N; Singh V
    Dalton Trans; 2022 Aug; 51(33):12670-12685. PubMed ID: 35938959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Adaptive Re-Organization Enables Polythiophene as an Extraordinary Cathode Material for Aluminum-Ion Batteries with a Cycle Life of 100 000 Cycles.
    Zhang J; Wu Y; Liu M; Huang L; Li Y; Wu Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215408. PubMed ID: 36515631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries.
    Gao Y; Zhang D; Zhang S; Li L
    Chem Rec; 2024 Sep; 24(9):e202400085. PubMed ID: 39148161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries.
    Han X; Wu F; Zhao R; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study.
    Xiao X; Wang M; Tu J; Jiao S
    Phys Chem Chem Phys; 2019 Mar; 21(13):7021-7028. PubMed ID: 30869709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries.
    Zhao Q; Hu Y; Zhang K; Chen J
    Inorg Chem; 2014 Sep; 53(17):9000-5. PubMed ID: 25119141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Low-Cost and Air-Stable Rechargeable Aluminum-Ion Battery.
    Meng P; Huang J; Yang Z; Wang F; Lv T; Zhang J; Fu C; Xiao W
    Adv Mater; 2022 Feb; 34(8):e2106511. PubMed ID: 34873764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core-Shell Structure for High-Performance Potassium-Ion Batteries.
    Yang SH; Lee YJ; Kang H; Park SK; Kang YC
    Nanomicro Lett; 2021 Dec; 14(1):17. PubMed ID: 34870769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenoxazine Polymer-based p-type Positive Electrode for Aluminum-ion Batteries with Ultra-long Cycle Life.
    Yang Z; Huang X; Meng P; Jiang M; Wang Y; Yao Z; Zhang J; Sun B; Fu C
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216797. PubMed ID: 36545849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.