These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36265289)

  • 1. A meshless fragile points method for rule-based definition of myocardial fiber orientation.
    Mountris KA; Pueyo E
    Comput Methods Programs Biomed; 2022 Nov; 226():107164. PubMed ID: 36265289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation.
    Joldes G; Bourantas G; Zwick B; Chowdhury H; Wittek A; Agrawal S; Mountris K; Hyde D; Warfield SK; Miller K
    Med Image Anal; 2019 Aug; 56():152-171. PubMed ID: 31229760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Transmural Path Model Improves the Definition of the Orthotropic Tissue Structure in Heart Simulations.
    Holz D; Du'o'ng MT; Martonová D; Alkassar M; Leyendecker S
    J Biomech Eng; 2022 Mar; 144(3):. PubMed ID: 34423814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free Mesh Method: fundamental conception, algorithms and accuracy study.
    Yagawa G
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(4):115-34. PubMed ID: 21558752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole.
    Jiang C; Liu GR; Han X; Zhang ZQ; Zeng W
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02697. PubMed ID: 25382158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational simulation of cellular proliferation using a meshless method.
    Barbosa MIA; Belinha J; Jorge RMN; Carvalho AX
    Comput Methods Programs Biomed; 2022 Sep; 224():106974. PubMed ID: 35834900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models.
    Bayer JD; Blake RC; Plank G; Trayanova NA
    Ann Biomed Eng; 2012 Oct; 40(10):2243-54. PubMed ID: 22648575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain impact stress analysis using advanced discretization meshless techniques.
    Marques M; Belinha J; Dinis LMJ; Natal Jorge R
    Proc Inst Mech Eng H; 2018 Mar; 232(3):257-270. PubMed ID: 29343194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmural fibre orientations based on Laplace-Dirichlet-Rule-Based-Methods and their influence on human heart simulations.
    Holz D; Martonová D; Schaller E; Duong MT; Alkassar M; Weyand M; Leyendecker S
    J Biomech; 2023 Jul; 156():111643. PubMed ID: 37321157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional large deformation model for soft tissue using meshless method.
    Dehghan MR; Rahimi A; Talebi HA; Zareinejad M
    Int J Med Robot; 2016 Jun; 12(2):241-53. PubMed ID: 26260248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Young-Laplace law and finite element based calculation of ventricular wall stress: implications for postinfarct and surgical ventricular remodeling.
    Zhang Z; Tendulkar A; Sun K; Saloner DA; Wallace AW; Ge L; Guccione JM; Ratcliffe MB
    Ann Thorac Surg; 2011 Jan; 91(1):150-6. PubMed ID: 21172505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the simulation of active cardiac mechanics using a smoothed finite element method.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2021 Jan; 115():110153. PubMed ID: 33388486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singular meshless method using double layer potentials for exterior acoustics.
    Young DL; Chen KH; Lee CW
    J Acoust Soc Am; 2006 Jan; 119(1):96-107. PubMed ID: 16454268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts.
    Doste R; Soto-Iglesias D; Bernardino G; Alcaine A; Sebastian R; Giffard-Roisin S; Sermesant M; Berruezo A; Sanchez-Quintana D; Camara O
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3185. PubMed ID: 30721579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A localized meshless approach for modeling spatial-temporal calcium dynamics in ventricular myocytes.
    Yao G; Yu Z
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):187-204. PubMed ID: 22408720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.