BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36265399)

  • 1. Development of a numerical model for sector-average plume gamma dose and its validation with dose rate measurements at Kalpakkam NPP site, India.
    Karmakar S; Srinivas CV; Rakesh PT; Gopalakrishnan V; Chandrasekaran S; Athmalingam S; Venkatraman B
    J Environ Radioact; 2022 Dec; 255():107029. PubMed ID: 36265399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches.
    Gallacher DJ; Robins AG; Burt A; Chadwick S; Hayden P; Williams M
    J Radiol Prot; 2016 Dec; 36(4):746-784. PubMed ID: 27655037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.
    Hamby DM
    Health Phys; 2002 Jan; 82(1):64-73. PubMed ID: 11768800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on enhanced atmospheric dispersion of 41Ar at the Trombay site.
    Chatterjee MK; Divkar JK; Patil SS; Singh R; Pradeepkumar KS; Sharma DN
    Radiat Prot Dosimetry; 2013 Aug; 155(4):483-96. PubMed ID: 23413091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison Between Measured Concentration of 3H in Kalpakkam Environment with Predicted Atmospheric Dispersion Model.
    Brindha JT; Sreedevi KR; Manonmani C; Jesan T; Rajaram S; Ravi PM; Tripathi RM
    Radiat Prot Dosimetry; 2017 May; 174(4):583-587. PubMed ID: 27542814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma dose rate for side sectors in a sector-averaged plume.
    Shirvaikar VV; Abrol V
    Health Phys; 1984 Jun; 46(6):1286-7. PubMed ID: 6724938
    [No Abstract]   [Full Text] [Related]  

  • 7. A simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume.
    Overcamp TJ; Fjeld RA
    Health Phys; 1987 Aug; 53(2):143-6. PubMed ID: 3610640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-Ray Dose From an Overhead Plume.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 May; 112(5):445-450. PubMed ID: 28350698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of autonomous gamma dose logger for environmental monitoring.
    Jisha NV; Krishnakumar DN; Surya Prakash G; Kumari A; Baskaran R; Venkatraman B
    Rev Sci Instrum; 2012 Mar; 83(3):035112. PubMed ID: 22462965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Gaussian-plume based Monte Carlo method for calculating radiation dose in the near field of buildings.
    Gallacher DJ; Robins AG; Hayden P
    J Radiol Prot; 2024 Jun; 44(2):. PubMed ID: 38834053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a coupled dispersion model to estimate depletion of a tritium oxide plume by a forest.
    Viner BJ; Goodlove S
    J Environ Radioact; 2020 Sep; 220-221():106316. PubMed ID: 32560893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced atmospheric
    Varga T; Orsovszki G; Major I; Veres M; Bujtás T; Végh G; Manga L; Jull AJT; Palcsu L; Molnár M
    J Environ Radioact; 2020 Mar; 213():106138. PubMed ID: 31983447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of the PRIME plume rise and building downwash model.
    Schulman LL; Strimaitis DG; Scire JS
    J Air Waste Manag Assoc; 2000 Mar; 50(3):378-90. PubMed ID: 10734710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local atmospheric transport behaviors of representative radionuclides during the Fukushima accident: A 200-m-resolution cross-scale study from site to 20 km.
    Zhuang S; Fang S; Dong X; Xu Y; Sheng L; Li X
    J Environ Radioact; 2023 Sep; 265():107212. PubMed ID: 37307754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic plume episode identification and cloud shine reconstruction method for ambient gamma dose rates during nuclear accidents.
    Zhang X; Raskob W; Landman C; Trybushnyi D; Haller C; Yuan H
    J Environ Radioact; 2017 Nov; 178-179():36-47. PubMed ID: 28755565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of simulated radioactive pollutant gas concentrations for a complex building array into radiation dose.
    Gallacher DJ; Robins AG; Hayden P
    J Radiol Prot; 2016 Dec; 36(4):785-818. PubMed ID: 27655064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective dose conversion coefficient for gamma ray exposure from an overhead plume.
    Dey R; Patni HK; Deo Singh K; Kulkarni MS; Anand S
    Phys Med Biol; 2019 Aug; 64(15):155001. PubMed ID: 31239410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of immersion doses from external exposure to a plume of radioactive material.
    Raza S; Avila R
    Health Phys; 2005 Sep; 89(3):247-54. PubMed ID: 16096500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.