BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36265405)

  • 1. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress.
    Li H; Tiwari M; Tang Y; Wang L; Yang S; Long H; Guo J; Wang Y; Wang H; Yang Q; Jagadish SVK; Shao R
    Ecotoxicol Environ Saf; 2022 Nov; 246():114191. PubMed ID: 36265405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content.
    Xiao N; Ma H; Wang W; Sun Z; Li P; Xia T
    Planta; 2024 Jan; 259(2):43. PubMed ID: 38277077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.
    Casaretto JA; El-Kereamy A; Zeng B; Stiegelmeyer SM; Chen X; Bi YM; Rothstein SJ
    BMC Genomics; 2016 Apr; 17():312. PubMed ID: 27129581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.
    Georgii E; Jin M; Zhao J; Kanawati B; Schmitt-Kopplin P; Albert A; Winkler JB; Schäffner AR
    BMC Plant Biol; 2017 Jul; 17(1):120. PubMed ID: 28693422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.
    Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR
    Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic response of maize plants to multi-factorial abiotic stresses.
    Sun CX; Li MQ; Gao XX; Liu LN; Wu XF; Zhou JH
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():120-9. PubMed ID: 25622534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet.
    Cao X; Hu Y; Song J; Feng H; Wang J; Chen L; Wang L; Diao X; Wan Y; Liu S; Qiao Z
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought-induced disturbance of carbohydrate metabolism in anthers and male abortion of two Gossypium hirsutum cultivars differing in drought tolerance.
    Hu W; Huang Y; Loka DA; Bai H; Liu Y; Wang S; Zhou Z
    Plant Cell Rep; 2020 Feb; 39(2):195-206. PubMed ID: 31680208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation.
    Ren J; Yang X; Ma C; Wang Y; Zhao J
    Plant Physiol Biochem; 2021 Oct; 167():958-969. PubMed ID: 34571389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots.
    Wang Y; Wang J; Guo H; Wu X; Hao M; Zhang R
    Plant Physiol Biochem; 2023 Jun; 199():107723. PubMed ID: 37163805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (
    Bheemanahalli R; Ramamoorthy P; Poudel S; Samiappan S; Wijewardane N; Reddy KR
    Plant Direct; 2022 Aug; 6(8):e434. PubMed ID: 35959217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress.
    Li Y; Su Z; Lin Y; Xu Z; Bao H; Wang F; Liu J; Hu S; Wang Z; Yu X; Gao J
    BMC Plant Biol; 2024 Jan; 24(1):34. PubMed ID: 38185653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.).
    Zhao C; Yang M; Wu X; Wang Y; Zhang R
    Plant Physiol Biochem; 2021 Nov; 168():128-142. PubMed ID: 34628174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize (
    Zi X; Zhou S; Wu B
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and
    Li T; Zhang Y; Liu Y; Li X; Hao G; Han Q; Dirk LMA; Downie AB; Ruan YL; Wang J; Wang G; Zhao T
    J Biol Chem; 2020 Jun; 295(23):8064-8077. PubMed ID: 32366461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought limits pollen tube growth rate by altering carbohydrate metabolism in cotton (Gossypium hirsutum) pistils.
    Hu W; Liu Y; Loka DA; Zahoor R; Wang S; Zhou Z
    Plant Sci; 2019 Sep; 286():108-117. PubMed ID: 31300136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Heat Shock Transcription Factor (
    Wang J; Chen L; Long Y; Si W; Cheng B; Jiang H
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.