These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36265541)

  • 1. Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration.
    Furlani F; Campodoni E; Sangiorgi N; Montesi M; Sanson A; Sandri M; Panseri S
    Int J Biol Macromol; 2023 Jan; 224():266-280. PubMed ID: 36265541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration.
    Furlani F; Montanari M; Sangiorgi N; Saracino E; Campodoni E; Sanson A; Benfenati V; Tampieri A; Panseri S; Sandri M
    Biomater Sci; 2022 Apr; 10(8):2040-2053. PubMed ID: 35302129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair.
    Serafin A; Rubio MC; Carsi M; Ortiz-Serna P; Sanchis MJ; Garg AK; Oliveira JM; Koffler J; Collins MN
    Biomater Res; 2022 Nov; 26(1):63. PubMed ID: 36414973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural crystallisation of crosslinked 3D PEDOT:PSS anisotropic porous biomaterials to generate highly conductive platforms for tissue engineering applications.
    Solazzo M; Monaghan MG
    Biomater Sci; 2021 Jun; 9(12):4317-4328. PubMed ID: 33683230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration.
    Adler C; Monavari M; Abraham GA; Boccaccini AR; Ghorbani F
    RSC Adv; 2023 May; 13(23):15960-15974. PubMed ID: 37250225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties.
    Spencer AR; Primbetova A; Koppes AN; Koppes RA; Fenniri H; Annabi N
    ACS Biomater Sci Eng; 2018 May; 4(5):1558-1567. PubMed ID: 33445313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility.
    Solazzo M; Krukiewicz K; Zhussupbekova A; Fleischer K; Biggs MJ; Monaghan MG
    J Mater Chem B; 2019 Aug; 7(31):4811-4820. PubMed ID: 31389966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Biocompatibility of Electroconductive Silk Fibroin/PEDOT: PSS Composites for Corneal Epithelial Regeneration.
    Bhattacharjee P; Ahearne M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33348815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between 3D-extruded electroconductive scaffolds and electrical stimulation to improve bone tissue engineering strategies.
    Silva JC; Marcelino P; Meneses J; Barbosa F; Moura CS; Marques AC; Cabral JMS; Pascoal-Faria P; Alves N; Morgado J; Ferreira FC; Garrudo FFF
    J Mater Chem B; 2024 Mar; 12(11):2771-2794. PubMed ID: 38384239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS).
    Yazdimamaghani M; Razavi M; Mozafari M; Vashaee D; Kotturi H; Tayebi L
    J Mater Sci Mater Med; 2015 Dec; 26(12):274. PubMed ID: 26543020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Neuronal Cell Affinity on PEDOT-PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering.
    Magaz A; Spencer BF; Hardy JG; Li X; Gough JE; Blaker JJ
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6906-6916. PubMed ID: 33320623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.
    Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM
    Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical Electrical and Mechanical Stimulations for Promoting Chondrogenesis of Stem Cells on PEDOT:PSS Conductive Polymer Scaffolds.
    Liu CT; Yu J; Lin MH; Chang KH; Lin CY; Cheng NC; Wu PI; Huang CW; Zhang PY; Hung MT; Hsiao YS
    Biomacromolecules; 2023 Aug; 24(8):3858-3871. PubMed ID: 37523499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 3D printed conductive grooved topography hydrogel combined with electrical stimulation for synergistically enhancing wound healing of dermal fibroblast cells.
    Lee JJ; Ng HY; Lin YH; Liu EW; Lin TJ; Chiu HT; Ho XR; Yang HA; Shie MY
    Biomater Adv; 2022 Nov; 142():213132. PubMed ID: 36215748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroconductive biomaterials for cardiac tissue engineering.
    Esmaeili H; Patino-Guerrero A; Hasany M; Ansari MO; Memic A; Dolatshahi-Pirouz A; Nikkhah M
    Acta Biomater; 2022 Feb; 139():118-140. PubMed ID: 34455109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration.
    Helgeland E; Rashad A; Campodoni E; Goksøyr Ø; Pedersen TØ; Sandri M; Rosén A; Mustafa K
    Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33592589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation.
    Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.