BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36265627)

  • 1. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips.
    Yuan Y; Jia H; Xu D; Wang J
    Sci Total Environ; 2023 Jan; 857(Pt 2):159563. PubMed ID: 36265627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic sensors for the detection of emerging contaminants in water: A review.
    Zhang Y; Li J; Jiao S; Li Y; Zhou Y; Zhang X; Maryam B; Liu X
    Sci Total Environ; 2024 Jun; 929():172734. PubMed ID: 38663621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of fiber-optic biochemical sensor in microfluidic chips: A review.
    Zhao Y; Hu XG; Hu S; Peng Y
    Biosens Bioelectron; 2020 Oct; 166():112447. PubMed ID: 32738649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection.
    Wang W; Xia L; Xiao X; Li G
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons learned from more than two decades of research on emerging contaminants in the environment.
    Noguera-Oviedo K; Aga DS
    J Hazard Mater; 2016 Oct; 316():242-51. PubMed ID: 27241399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Gas Sensors: Detection Principle and Applications.
    Kaaliveetil S; Yang J; Alssaidy S; Li Z; Cheng YH; Menon NH; Chande C; Basuray S
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research progress on lyophilization for pretreatment of emerging organic contaminants in environmental samples].
    Zhang Y; Guo S; Sun Q
    Se Pu; 2021 Aug; 39(8):827-834. PubMed ID: 34212583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reusable fiber-embedded microfluidic chip for rapid and sensitive on-site detection of kanamycin residues in water environments.
    Chen D; Xu W; Huang Z; Liu J; Long F
    Analyst; 2023 Nov; 148(23):6120-6129. PubMed ID: 37929744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic advances in food safety control.
    Diep Trinh TN; Trinh KTL; Lee NY
    Food Res Int; 2024 Jan; 176():113799. PubMed ID: 38163712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review.
    Mi F; Hu C; Wang Y; Wang L; Peng F; Geng P; Guan M
    Anal Bioanal Chem; 2022 Apr; 414(9):2883-2902. PubMed ID: 35064302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging.
    Zhang W; Lang X; Liu X; Li G; Singh R; Zhang B; Kumar S
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
    Hengoju S; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biosens Bioelectron; 2022 Mar; 200():113910. PubMed ID: 34974260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optoelectronic capillary sensors in microfluidic and point-of-care instrumentation.
    Borecki M; Korwin-Pawlowski ML; Beblowska M; Szmidt J; Jakubowski A
    Sensors (Basel); 2010; 10(4):3771-97. PubMed ID: 22319325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental contaminants of emerging concern in seafood--European database on contaminant levels.
    Vandermeersch G; Lourenço HM; Alvarez-Muñoz D; Cunha S; Diogène J; Cano-Sancho G; Sloth JJ; Kwadijk C; Barcelo D; Allegaert W; Bekaert K; Fernandes JO; Marques A; Robbens J
    Environ Res; 2015 Nov; 143(Pt B):29-45. PubMed ID: 26123540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation.
    Gavrilescu M; Demnerová K; Aamand J; Agathos S; Fava F
    N Biotechnol; 2015 Jan; 32(1):147-56. PubMed ID: 24462777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants.
    Du XY; Yang JY
    Sci Total Environ; 2024 Apr; 919():170745. PubMed ID: 38340832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective.
    Kumar P; Shimali ; Chamoli S; Khondakar KR
    Methods; 2023 Dec; 220():69-78. PubMed ID: 37951559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples.
    Yildirim N; Long F; He M; Shi HC; Gu AZ
    Environ Sci Process Impacts; 2014 May; 16(6):1379-86. PubMed ID: 24788953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.